| NTRCOL- C COVPI LER

REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
responsibility for any inaccuracies.

The software described in this manual 1is proprietary and is
furni shed under a license agreenent fromlintrol Corp. The software
and supporting docunentation may be used and/or copied only in
accordance with said |license agreenent.

INTROL-C is a registered trademark of Introl Corp

Introl Corp.
647 W Virginia St
M | waukee, W 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp
All R ghts Reserved

Tabl e of Contents

Introl -C Conpil er Reference Manual

Table of Contents C. 0.
Introduction C 1.
Getting Started C 2.

Theory of Operation C. 3.

I NTRCDUCT! ON

Introl -C provides a set of prograns that have been designed to

facilitate the devel opment of high-efficiency software, in C for
m cr oprocessor - based systens. It allows the programmer to take
advantage of all the convenience, power, and structure of the C

programr ng |anguage, while producing executable progranms whose
conpact size and fast speed of execution rivals that of prograns
witten in assenbly | anguage.

The Introl-C software package includes a C Conpiler, Relocating
Assenbl er, Linker, Loader, Library Manager, and Standard Library.

This Compiler Reference Manual describes the operation, use, and
features of the C Conpiler and Rel ocating Assenbl er.

The operation and features of the Linker, Loader, and Library
Manager are described in the Linker Reference Manual

The Standard Library Manual furnishes a detail ed description of the
functions contained in the Standard Library.

Nowhere in any of these nmanuals do we profess to teach the C

progranmm ng | anguage. It is assumed the wuser has access to the
definitive text, "The C Programm ng Language", Kernighan & Ritchie
(Prentice-Hall), or one of the several available C |anguage

tutorials, for questions pertaining to the particulars of the C
| anguage itself. The set of Introl -C Users Manual s are intended only
to describe Introl's inplenmentation of the | anguage.

GETTI NG STARTED

This section provides a brief overview O the general procedures for
using Introl-Cand is intended to help the user get off to a "fast

start” in running the Conpiler and its related progranms. For nore
detailed operating information the reader is referred to subsequent
sections in this manual, as well as the other related user manual s
that nmay have been furnished with the Introl-C package. The

following coments assune that Introl -C has already been installed
on the wuser's system (Refer to the |Installation Instructions
acconpanying the Introl-C distribution diskette for applicable
installation procedures.)

GENERAL

Introl -C is designed to enable the user to create an executable
output file froma C source file with a minimumof effort. Normally
it is only necessary for the user to enter a conpilation/assenbly
conmand |ine, and then enter a |link/load conmand |i ne.

In the sinplest case, and assumng the C source programresides in a
single file called "sieve.c", for exanple, all that is necessary is
to enter the conpiler command |i ne:

icc sieve
and then enter the linker command |i ne:
ilink sieve

The compiler command line entry wll initiate execution of the
Conpiler, which first conmpiles the file "sieve.c" to produce an
internediate (and nornmally tenporary) assenbly |anguage file, and
t hen automatically calls the Assenbler, which assenbles the
Conpiler's assenbly |anguage output into a rel ocatabl e nodul e nanmed
"sieve.R' as the result. The linker command line, in turn, will call
the Linker, causing it to first link the relocatable file "sieve. R
with any referenced functions fromthe Standard Library, and then
automatically execute the Loader, which |loads the linked output into
an executable output file as the final result. The executabl e out put
file will have the filenane "sieve", possibly wth a filenane
ext ensi on appended, dependi ng upon which specific Introl Loader is
being used (refer to Loader Appendices in the Linker Reference

Manual for details). VWhen t he Loader fini shes, t hree
compilation-related files wll typically exist: the original C
source file "sieve.c", the conpiled and assenbl ed rel ocat abl e nodul e
"sieve.R', and the linked and |oaded executable output file.

COVPI LER COMVAND LI NE

The conpiler command |ine causes a C source file to be both conpiled
and assenbl ed to produce a rel ocatable nodule as the result.

The general formof the conpiler command line is:

icc <filename> {<option>)

where <filename>is the nane of the C source file which is to be
conpiled and (<option>) represents zero or nore option specifiers
for controlling the conpilation and assenbly processes. The input
filename is expected to have a filenane extension; if none is
specified, the Conpiler wll assune the source file nane has the
extension ".c". Unless the user explicitly assigns some other nane
to the output file, the relocatable file produced after the
Assenbl er pass finishes will default to having the sane nane as the
C source input file, except with the fil ename extension ". R’

Conpiler-related as well as Assenbler-related options rmay be
specified on the conpiler command |ine. Each of the avail able
options are described in detail in the Conpiler Section of this

manual . Sone of these option specifiers, and their general function
are indicated bel ow

Conpi l er-specific option specifiers include:

-a[t]d] b|]s]=<loc>
Causes data of type "Text" or "Data" or "Bss" or "String"
respectively, to be placed under the |ocation counter indicated
by the <l oc> nunber.

- b=<directory>
Identifies <directory> as being the place to find current and
subsequent passes of the Conpiler

-C
Overrides default condition wth respect to generation of
position independent code.

-d
Overrides default <condition wth respect to generation of
position independent data.

-g<C

Forces wuse of alternate <c>" version pre-processor pass

-i=<directory>
Identifies <directory> as a place to search for #include files.

-k
Causes console to display the nane of each conpilation pass as
it is being executed.

- mknanme>(=<st ri ng>)
Defines <nane> in preprocessor, with value <string> optionally
assigned to <nane>.

Retains the internmedi ate assenbly | anguage output file produced
by the Conpiler.

-S
Causes "nested coments” to be disall owed.

-t=<directory>
Places tenporary files produced by this and subsequent passes
of the Conpiler in "directory” |ocation

-y[=<n>]
Strips all identifiers to a maximumlength of <n> characters.

Interprets "\n
returns.

(ie newine) characters as being carri age

Assenbl er-speci fic options include:

-o=<fil enane>
Assigns the name <filenanme> to Assenbler's output object file.

- g=<cl ass>
Sets class specifier of Assenbler's output nmodule to the
nuneric val ue indicated by <cl ass>.
-U
Forces all undefined synbols to default to inported synbols.
-X
Prevents an object file from being produced.

LI NKER COVVAND LI NE

Unless the wuser explicitly opts to inhibit |oading, the |inker
command line will cause an input nodule to be both Iinked and | oaded
to produce an executable output file as the end result.

The general formof the linker conmand line is:
ilink <file> {<options>} <file> {<options>}

where each <file> entered represents the name of a file to be |inked
and {<options>} represents zero or nore option specifiers for
controlling the linking and |oading processes. Each input file is
expected to have a filenane extension; if none is specified, the
Linker wll assune the input filenane extension to be ".R'

Normal Iy, the nanme of the executable output file will be the same as
the nodul e which contains the "primary function nane", but with a
filenane extension determned by the particular Loader being used
(refer to the Linker Reference Manual for further discussion).

Each file that is input to the Linker is expected to be a
rel ocatabl e nodul e. The Linker will NOT conplain about producing an
out put nodul e whi ch contains wunresolved references; however,
attenpts to subsequently | oad such a nodule will not be successful

Bot h Li nker and Loader options may normally be specified on the link
command |ine. These options are discussed in detail in the Linker
Ref erence Manual. Followi ng are sone of the link-time options that
are avai |l abl e:

-b
Do not search Standard Library, "libc.R'.

-c=<file>
Find additional options and/or filenanes in command, file naned
<file>.

- d[<c>]

Use optional "<c>ld" Loader instead of the "standard" Loader

- e=<synbol >
Set entry point to <synbol >.

-f<string>
Find additional library named "lib<string> R' in the standard
pl ace for libraries.

-f=<string>
Find additional library named "<string> R' in the standard
pl ace for libraries.

SI[s]IXI[ul[=<file>]
Produce a linker listing with specified content.

- me<synbol >
Set the primary function nane to be <synbol >.

-n
Do not automatically call Loader

-o=<file>
Assign the nane <file> to Linker's output file.

- P[<c>]
Pi pe Li nker's output to Loader (if appl i cabl e for host
operating systen).

-s

Strip output file of all non-entry defined synbols.

-t=<cl asslist>
Li nk using <classlist> classes of nodule, if they are
avai | abl e.

-W

make executable file no matter what! (ie even if unresolved
ref erences exist).

C24

FI LENAMVE CONVENTI ONS

In general, the full legal filenames of any files which are input
to, or output, by, the Conpiler, Assenbler, Linker, and Loader are
al ways of the form

<nane><ext ensi on>

where <nane> is the nominal "generic name" of the original source
file involved and <extension>is a filename extension, typically
consisting of a period (.) followed by one or nore trailing
characters. Wen an input file is being specified on a command |i ne,
however, it is normally sufficient to specify just the <nane>
portion of the filename; the Introl -C program being call ed, whether
it be the Conpiler, the Assenbler, the Linker, or the Loader, wll
automatically select the nanmed file having an appropriate extension
(if such file exists) as described bel ow

VWereas the generic nane associated with a given file serves to
generally identify that file as being derived from or related to
sone C source programor function, the fil enanme extension indicates
the specific nature of the contents of that particular file; ie
whether it is a file that contains the C source text itself, or a
file that contains the assenbly |anguage version of the source
program or a file that contains a rel ocatabl e nodule version, or a
file that contains executabl e output, and so on

Because of this convention of using a filenane extension to identify
the specific nature of a file's contents, the Conpiler, the

Assenbl er, t he Linker, and the Loader are all designed to
automatically append a filenane extension to the output files they
produce. In each case the "generic nanme" of the output file that

each of these conponent Introl-C prograns produces usually remains
the same as that of the input file, but the extension appended to
the output is unique to the particular Introl-C conpilation program
that generated the file. For exanple the Conpiler normally appends
an extension of the form".Mxx>" to the assenbly | anguage files it
produces, where the <xx> represents a 2-digit nunber as descri bed
later in this section; the Assenbler appends the extension ".R' to
the relocatable output files it produces; and the Linker appends the
extension ".RL" to the Ilinked (but unloaded) relocatable output
files it produces. 1In the case of the Loader, the specific fil enane
extension (if any) appended to the output is determ ned by which of
the several Introl Loaders is being used to generate the executable
out put file.

Simlarly, the Conpiler, the Assenbler, the Linker, and the Loader
each expect their respective inputs to normally have a specific
filenane extension (ie usually the extension that is appropriate to
the "type" of file format each of these prograns expects to

process). In the case of the Conpiler, input files are expected to
have the filename extension ".c", which is the extension normally
associated with files containing C source text. Input files to the

Assenbler are normally expected to have an extension of the form

"OMRXXS" (where <xx> represents a 2-digit nunber assigned by the
Conpiler), which is the extension normally appended to assenbly
| anguage files that have been produced by the included conpiler. The
Li nker expects its inputs to have the extension ".R', which is the
extension the Assenbler typically appends to the rel ocatabl e nodul es
it produces. The Loader expects its input files to have the
extension ".RL", which is the extension the Linker normally appends
to the relocatable and linked output files it produces.

Thus, wunless sone other filenane extensions are explicity defined
for use on a command line, Introl-C wll default to using input
files, and producing output files, having filename extensions as
fol | ows:

Introl -C Defaul t Fil enanme Extension
Proogr am Input Files Qutput File
Conpi | er ".c" " Mkxx>"
Assenbl er " MRXx>" ".R

Li nker ".R " RL"
Loader "LRLY (varies with

Loader type)

*Note: The "xx>" designator in the ".Mxx>" extension represents a
2-digit number unique to the specific Introl-C conpiler package that
is being used. For those Introl-C conpiler packages that target the

6809 processor, the specific default extension is ".M9"; for
versions that target the 6801 and simlar processors, the extension
is ".M1"; for versions that target the 6805, the extension is

".M)5"; for versions that target the 68000, the extension is ".M8";
for wversions that target the NS16000, the extension is "M6"; for
versions that target the 8086, the extension is ".M6"

Al so, as indicated in the above table, the output filename extension
that is assigned to the executable output file wll be dependent
upon which of the several available Introl Loaders is being used.
The reader is referred to the Loader Appendices of the Linker
Ref erence Manual for further information pertaining to Loader output
fil enanes.

ASSEMBLER COMVAND LI NE

Normally the Assenbler is invoked by the Conpiler automatically as
part of any conpil ation/assenbly process. However, the Assenbler may
al so be called independently by the user for assenbling user-witten
assenbl y | anguage prograns.

The general form of the assenbler command line is:

r<xx> <fil ename> {<opti on>}

where "r<xx>" represents the Introl filenanme of the applicable
Assenmbl er furnished with the Introl-C package, <filenane> is the
nane of the assenbly |anguage file which is to be assenbled, and
{<option>) represents zero or nore assenbler option specifiers.

The "<xx>" in the "r<xx>" filenane of the Assenbler is a 2-digit
nunber unique to the specific Introl-C package being used. The
Introl -C package that targets the 6809 processor has the specific
Assenbler filename "r®"; the version that targets the 6801 and
simlar processors has the Assenbler filenanme "r0l"; the version
that targets the 6805 has the Assenbler.filename "r05"; the version
that targets the 68000 has the Assenbler filenane "r68"; the version
that targets the NS16000 has the Assenbler filename "rl6"; the
version that targets the 8086 has the Assenbler filenane "r86"

The assenbly |anguage input file is expected to have a filenane
extension; if none is explicitly specified, the input filenane
extension wll default to the ".Mxx>" extension that the included
Conmpiler normally appends to its own output files. (ie ".M?9",
".M)5", etc, as applicable). The relocatable output file created by
the Assenbler will nonminally have the sanme nane as the input file,
but with the filename extension ".R'.

LOADER COMVAND LI NE

Normally the Loader is <called automatically by the Linker as a
result of a linker command line call. However, the Loader may al so
be executed independently by the user via a |oader command |ine of
the general form

<c>ld <fil enane> {<option>}

where the <c> represents the first letter of the Introl filenane of
the Loader which is to be called (several types of conpatible
Loaders are optionally available and potentially wusable with
Introl -C), <filename> is the filenane of the relocatable file which
is to be |loaded, and (option) represents zero or nore option
speci fiers. The relocatable input nodule is normally expected to
contain no unresol ved references. The input file is expected to have
a filenane extension; if none is explicitly specified, a ".RL"
filenanme extension is assumed. The wuser is referred to the Loader
Appendi ces of the Linker Reference Manual to determ ne the "<c>ld"
nane(s) of the specific Loader(s) that may be legally accessed, the
applicable options available for each such Loader, and the unique
filenane extension (if any) assigned to the executable output file
produced by each Loader type.

THEORY OF OPERATI ON

The creation of an executable file from a C source file can be
considered to occur in four distinct phases: a conpilation phase,
foll owed by an assenbly phase, followed by a Iinking phase, followed
by a loading phase. Under Introl-C however, the assenbly phase is

al ways initiated automatically when t he conpi l ati on phase
termnates, and the |I|oading phase is initiated automatically when
the 1linking phase termnates. Thus, it will norrmally appear to the

Introl -C user as though only two phases are actually involved: a
conpi |l ation/assenbly phase (which is initiated via a single conpiler
command line call), and a |inking/loading phase (which is initiated
via a single linker command line call).

COWPI LATI ON PHASE

The compilation phase, per se, is performed by the Conpiler and
translates a C source text file into an assenbly | anguage text file
which is suitable for input to the Assenbl er.

The Conpiler converts a C source file into assenbly |anguage by
segentially executing four separate conpilation prograns, or
"passes”, which are called passes "cO', "cl", "c2", and "c3"
respectively. (Note: The "cO' pass is alternatively called the "icc"
pass for sone operating systemversions of Introl-C) Each of these
passes performs a unique function in the overall conpilation process
and, as each pass finishes, it automatically initiates the next pass
in the sequence.

The basi c function of the cO pass, al so known as t he
"preprocessor”, is to preprocess the C input text, renoving
comments and other white space fromthe C-source text and executing
any preprocessor directives, ultimately transformng the original C
input into a series of tokens that can be nore easily nmanipul at ed
and analyzed. |If illegal characters appear in the C source text, or
preprocessor directives have been used inproperly, the cO pass wll

detect these and flag themas errors. The cl pass, also called the
"parser", converts the output of the cO pass into two resultant
files: atriple file, which is a tree representaion of the origina

program and a synbol file. The cl pass also checks the program for
semanti cal and grammatical accuracy and is responsible for detecting
and reporting any errors of this type. The function of the c2 pass,
also called the "optimzer", is to optimze the triple file
generated by cl to reduce the size and increase the execution speed
of the final program The c¢3 pass, called the "code generator”, uses
the optimzed triple file produced by c2, together with the synbol

table produced by cl, to produce an assenbly |anguage output file
for the target processor. The several Conpiler passes transfer
i nformati on between one another via tenmporary files, which are
normally automatically deleted once their contents are no |onger
needed by the Conpiler.

The final result of the 4-pass conpilation phase, therefore, is the
creation of an assenbly | anguage text file which is suitable input

for the Introl Assenmbler. Just before the |ast Conpiler pass (c3)
term nates, it automatically calls the Assenbl er

ASSEMBLY PHASE

The function of the assenbly phase is to translate the assenbly
| anguage text file that is produced by the ¢3 pass of the Conpiler
into a relocatable object file which is suitable input for the
Linker (or, if nolinking is required, for possible input directly
to the Loader). The assenbly phase, perforned by the Assenbler
program is initiated automatically when the <¢3 Conpiler pass
finishes.

During the assenbly phase, the Assenbler converts the assenbly
| anguage file produced by the conpilation phase into a "rel ocatabl e"
out put file that contains a single relocatable nodule. The
Assenbler's output is "relocatable" from the standpoint that al
address references made wthin the nodule are independent of the
module's final absolute address location in nmenory. It is the
function of the Loader to determ ne the final location of the nodule
in menory and, thus, the absolute |ocation of addresses. Therefore,
until the Assenbler's output nodule has been processed by the
Loader, the out put nodul e gener at ed by the Assenbler is
"rel ocat abl e" because the actual position of the nobdule in nenory is
still subject to change.

Al though the Assenbler is capable of generating error nessages, it
should remain silent if the input file is the result of a
conpilation since the Conpiler itself should in no case produce a
syntactically incorrect assenbly |anguage file.

VWhen the Conpiler calls the Assenbler, it normally specifies an
option to the Assenbler which causes the Conpiler's assenbly
| anguage output file to be deleted after the Assenbler has finished
using it. Thus, only the relocatable object file generated by the
Assenbler normally remains as the final result for the typica
conpi | ati on/ assenbl y process.

LI NKI NG PHASE

The function of the Linker is to resolve external references in a

rel ocatabl e nodul e. It does this by joining the nodule to other
rel ocat abl e nodul es whi ch satisfy those external references. The
resul t of the linking process is always a single resultant
rel ocatable nodule which, if all external references have been
satisfied, is suitable input for the Loader. Since the Linker

normally calls the Loader automatically, it usually appears as if
the Linker both Ilinks and | oads the input to produce an executabl e
file as the end result.

VWhenever a program nodul e references a | abel which is not defined in
that sanme nodule, it is said to have an "external reference". Al

such external references nust be "resol ved" before the nodul e can be
| oaded to produce an executable nodule. Although it is possible to

create a program nodule that makes no external references, it is
nmore common that a module will reference many | abel s which are not
defined in its text; thisis certainly the case wth nodules
produced as a result of conpiling and assenbling a C source file.
The Linker "resolves" such external references by first locating
ot her nodul es which define the unresolved |abels, and then |inking
these nodules with the original nodule to produce a |larger single
rel ocatable nodule that includes the necessary |abel definitions.
The Linker attenpts to resolve as nany external references as it
possibly can, termnating when it either has resolved all the
external references that are mmde or, alternatively, when it runs

out of places to look for definitions which wll satisfy any
remai ni ng unresol ved references. Wen the Linker determines it has
resolved all the references it possibly can, it wll normally
automatically call the Loader. The Linker will not conplain if sone
unresolved references still exist in its Iinked output; however,
attenpts to | oad such nodules will not be successful.

Inputs to the Linker nust be relocatable nodules, such as those
produced by the Assenbler, or as produced by the Linker itself (ie
nmodul es previously produced by executing the Linker alone, with the
Loader pass inhibited). Normally the Standard Library is always
searched by the Linker in its attenpt to resolve necessary
ref erences.

LOADI NG PHASE

During the |oading phase, the Loader fixes absol utes addresses for
relocated values within a relocatable nodule, thereby converting a
rel ocatable mpdule into an "executable" output file. The exact
format of the "executable" output file that is produced during the
| oadi ng phase is determ ned by which of several optionally avail able
Introl Loaders is being used. Depending on Loader type used, the
output file may be executable under the host operating systens or
execut abl e wunder sone other target operating system or it may be a
file of load records in one of several hex formats. (See the Loader
Appendi ces of the Linker Reference Manual for further information.)

Normal Iy, unless optionally overridden by the user, the 'standard

Loader included in the Introl-C package is automatically called by
the Linker when the Linker term nates. For resident Introl-C
conpilers, the "standard" Loader is one which produces an output
that is executable on the host system For Introl-C Cross-Conpiler
packages, the "standard" Loader is one that produces an output file
of hex | oad records.

The Loader expects its input to be a single relocatable nodul e which
has no unresol ved external references. Normally (unless optionally
overridden by the user) the Loader will conplain about unresolved
external references inits input and |oading of such nodules wll
not be successful

C.3.3

C. 3.

COVPI LER

The function of the Conpiler is to translate a C source file into an
assenbly |anguage text file which is suitable input for the Intro

Assenbl er. In normal operation the Conpiler always calls the
Assenbler when the it finishes. Therefore, invoking the Conpiler
wil | typically result in a fully conpiled, fully assenbl ed

rel ocat abl e out put nodul e bei ng produced.

The result of a successful conpilation wll be the creation of a
rel ocatable object nodule which will have the sane file nane as the
original C source input file, but with the filename extension ".R'

An internedi ate assenbly |anguage file is produced by the Conpiler

which is wused as the input to the Assenbler. However, this
i nternedi ate assenbly language file is normally automatically
del eted when the Assenbler finishes using it. |If the user wi shes to

retain the Conpiler's assenbly |anguage output, a Conpiler option
for doing so (the "-r" option) is provided. Wien the "-r" option is
specified, the assenbly |anguage output will be saved in a file
havi ng the same nanme as the C source input file, but with a fil enane
extension of the form ".Mxx>", where <xx> represents a 2-digit
nunber as descri bed bel ow

COVPI LER COMVAND LI NE

A conplete 4-pass conpilation and assenbly is initiated using a
compi l er command |ine of the follow ng form

icc <filename> {<option>}

where <filename> is the nane of the C source file which is to be
conpiled and {<option>} is zero or nore Conpiler and/or Assenbler
option specifiers. (Remenber the Conpiler automatically calls the
Assenbl er when it finishes.) If no filenane extension is specified

for the input file, the filenane extension ".c" 1is assuned.
The result of a successful conpilation and assenbly wll be a
rel ocatable object nodule, normally having the same fil enane as the
input file, but with the filenane extension ".R' (assigned by the

Assenbl er). The "-r" option nust be specified (see Compiler Options,
below) if the user w shes the Conpiler's assenbly |anguage out put
file to be retained; this assenbly |language file wll otherw se
automatically be del eted when the Assenbler finishes using it. The
Conpiler's assenbly |anguage output file, if saved, wll have
the same filenane as the original input file, but with a filenane
extension of the form™".Mxx>", where the <xx> represents a 2-digit
nunber. For Introl-C Conpilers that target the 6809 processor, this
extension wll be ".M9"; for Conpilers that target the 6801 and
simlar processors, the extension will be ".M1"; for 6805 targets,
".M)5"; for 68000 targets,"”.Ms8"; for NS16000 targets, ".M6"; for
8086 targets, ".MG6".

It should be noted that the Conpiler pre-pends an underscore ("_")
at the beginning of each synbol it generates. Thus, although a

C4.1

keyword such as "main", for exanple, is not preceded by any
underscore at the C programming level, it will have a pre-pended
underscore whenever it appears in any output files generated by the
Conmpi l er. Accordingly, the Assenbl er and Li nker expect all C synbols
in their inputs to begin with an underscore. Because of this, when
the wuser is witing assenbly | anguage progranms for direct input to
the Assenbler, or explicitly defining a "program nam ng function"
synbol or an "entry point" synbol at link tine, any C |anguage
symbols or C functions that are wused nust sinmilarly always begin
with a |eading underscore character (even though these synbols or
functions, at the C programlevel, do not have a | eadi ng underscore
in their nanmes).

COWPI LER COVMAND LI NE OPTI ONS
As indicated above, option specifiers for altering the operation of
the Compiler, and also the Assenbler, may be specified on the

conpiler conmand |ine. Any such option specifiers should al ways
appear after the input file named on the comrand |ine. Option
specifiers are indicated by a dash, "-", followed by an al phabetic

character, perhaps followed by an equals sign and paraneter. The
al phabetic character indicates which option is desired and the
paranmeter is dependent on the option. Option specifiers which are
not pertinent to the Conpiler itself are automatically passed on to
the Assenbler when it is subsequently <called by the Conpiler. The
various options available for use are described below grouped
according to whether they apply specifically to the Conpiler, per
se, or whether they apply specifically to the Assenbler pass.

Conpi | er-specific options include:

-a[t]d] b|]s]=<Ioc>
where [t|d|b|s] indicates a single letter ("t" or "d" or"b" or
"s") and <l oc> is an unsigned nunber between 0 and 15. This
option will force the Conpiler to place generated output of a
speci fied type under any one of 16 avail able | ocation counters,
whi ch counters are nunbered fromzero through 15. Data type is
specified by the letter entry; "t" for text; "d" for data; "b"

for bss; and "s" for strings. The <l oc> entry specifies the
| ocation counter number. Thus the option specification "-ad=5"
wil | cause all initialized data to be placed under |ocation

counter 5 (rather than its default counter of 1). The default
| ocation counter for code (text) is zero (0); the default for
dat a is location counter one (1); the default for strings is
| ocation counter two (2); and the default for uninitialized
data (bss) is location counter three (3).

- b=<directory>
This option is used to specify that <directory> is the place in
whi ch this, and subsequent passes, can expect to find
subsequent passes of the Conpiler. This directive may be
appl i ed to any pass of the Conpiler and is in force during
subsequent passes.

C.4.2

This option changes the Compiler's default condition with
respect to the "position dependency" of generated code, as
fol | ows. If Introl-Cis being run on a host operating system
which does not pernmit position dependent code to be executed,
the conmpiler wll default to generating only position
i ndependent code. In such case, this option will override this
default condition and force the Conmpiler to instead generate
position dependent code. |If Introl-Cis instead being run on a
host operating systemthat does permt position dependent code
to be executed, the Conpiler wll default to generating
position dependent code. In such case, this option wll
override this default condition and force the Conpiler to
i nst ead generate position i ndependent code. Position
i ndependent code is code in which no absolute references are
permtted; all junps are relative to the programcounter and
thus are not dependent on the final location of the code in
menory. This option is useful primarily for users who wish to
generate code for a target machine other than the host. This
option is used only by the c¢3 (code generating) pass of the
Conpiler; it may, however, be specified in the initial call to
the first pass of the Conpiler

This option changes the Compiler's default condition with
respect to the "position dependency" of generated data, as
fol | ows. If Introl-Cis being used on a host operating system
that does not permt progranms w th position dependent data to
be executed, the Conpiler will default to generating only
position i ndependent data. In such case, this option overrides
this default <condition and forces the Conpiler to instead
generate position dependent data. |If Introl-Cis instead being
run on a host operating system which does permt prograns with
position dependent data to be executed, the Conpiler wll
default to generating position dependent data. |In such case,
this option overrides this default condition and forces the
Compiler to instead generate only position independent data.
Position independent data is data that nmust be referenced
through a register. The actual position of position independent
data is not known until the necessary registers are set, just
prior to execution of the main program This option is usefu

primarily for users who wish to generate code for a target
machi ne other than the host. Although this option is used only
by the c¢c3 (code generating) pass of the Conpiler, it may be
specified in the initial call to the first pass.

- g<c>

This option specifies that an optional parser pass, naned
"cl <c>", be used (if such optional "cl<c>" pass exists) for the
compi lation process in lieu of the "standard" cl parsing pass.
Dependi ng wupon the specific host operating systemfor which it
has been supplied, sonme versions of the Introl-C Conpiler may
i nclude the "standard" cl pass program as well as one or nore
optional™ wvariations of the cl pass. The "standard" cl pass

C.4.3

supports all features of the C |anguage described in the
"Definition O Introl -C' section of this manual. The "optional"
parser(s) provided, if any, typically omt support for one or
more features of the Clanguage and are wusually intended to
permt the user to circumvent nenory limtations that m ght
otherwi se prevent conpilation of |arge prograns under certain
host operating systens. If any optional parsers have been
supplied for use for your particular host configuration, such
parsers will be described in the Appendices of this manual. The
option, of course, should only be specified if optiona
"cl <c>" parser prograns have, in fact, been furnished with your
Conpi | er.

-i=<directory>

This option specifies that <directory> is the place to search
for files specified via a #include preprocessor directive if
the specified file cannot be found in the default |ocations.
This option may be specified up to 9 tines so that up to 9
different places may be searched when the preprocessor is
| ooking for an include file. |If the Conpiler passes are being
run individually, this option is legal only for the cO pass.

This option causes the nanme of each conpil ation pass (including
the assenbly pass) to be displayed on the console as that pass
is being executed. This is wuseful for permtting the user to
noni tor the progress of a conpilation sequence when Introl-Cis
bei ng run under a relatively "slow' host operating system

- mkname>{ =<st ri ng>}

Thi s option has the effect of permtting a #define
preprocessor directive to be specified on the conmand |ine.
The -moption "defines" the identifier given by <nane> to the
preprocessor and assigns the value given by the optiona
<string>to this identifier.

This option prevents the next conpilation pass from being
| oaded when the current pass term nates.

This option specifies that the assenbly |anguage source file
produced by the Conpiler (which will have a filenane extension
of the form ".Mxx>") should be retained. This assenbly
| anguage file output by the Conpiler is otherw se automatically
del eted when the Assenbl er has finished using it.

This option instructs the Conpiler to disallow nested conments.
That is, a slash-star conbination appearing wthin a comrent
will not be interpreted as the start of a nested coment when
this option is specified. This option should not be confused
with the "-s=<size>" option described bel ow, which is intended
to provide a conpletely different effect.

C. 4.4

- S=<sj ze>

When the c2 (optimzer) pass of the Conpiler is being executed
separately, this option may be used to set the maxi mum size of
the triple buffer. The buffer size will be set to the value
i ndi cated by <size> which nust be an integer nunber. Normally
the size of the triple buffer is not of concern to the
programer and is otherwi se automatically set by the cl pass to
produce an efficient buffer size. The "-s=<size>" option should
be wused only when the c2 pass is being i ndependently executed;
if wused under any other condition, the Conpiler will otherw se
interpret it as being the "-s" option,, described previously,
whi ch di sall ows nesting of coments.

-t=<directory>

This option specifies that <directory>is the place in which
this and subsequent passes of the Conpiler are to place and
find their tenporary files.

- Y[=<n>]

The

This option forces the Conpiler to strip all of its identifiers
to a maxi mumlength of <n> characters, where <n> is a positive
integer less than or equal to 90. |If this option is not used,
the Conpiler will default to permitting identifiers to be up to
90 characters long. The "=<n>" entry is optional and, if not
used, wll cause the maximumlength to be automatically set at
8 characters (ie the specification "-y will strip al
identifiers to a maximumlength of 8 characters, just as would
occur for the specification "-y=8").

This option causes all "\n" (newine) character constants to be
interpreted as being carriage returns. This option is included
because the definition of the "\n" character is anbigious on
some operating systems. A "\n" is defined by the C language to
represent both a newine and a linefeed. This works only if the
operating systemin use defines its new ine character to be a
linefeed. Unfortunately sone operating systens use the carriage
return to indicate a newine. Thus, fromthe Conpiler's point
of view, it is not always clear whether a linefeed or a newine
is intended by the user when a \n character is encountered.
This option is provided primarily for those users having
trouble with the distinction when transporting source code from
one type of systemto another.

foll owi ng Assenbl er-specific options may be specified on the

conpi l er command | i ne:

-o=<fil ename>

This option allows the user to explicitly nane the Assenbler's
output file, assigning the name indicated by <filename> to this

output file. For exanple, the specification "-o=file" would
assign the nane "file.R' to the rel ocatabl e nodul e produced by
the Assenbler. |If the -o option is not specified, the object

C.4.5

file is given the same nanme as the input file, except with the
filename extension ".R'. Unless the <filenane> explicitly
defines sone other filenanme extension, the extension ".R" wll
automatically be appended by the Assenbl er

- g=<cl ass>

This option is used to assign a nuneric class specifier to the
rel ocat abl e nodul e produced by the conpiler. The class
specifier assigned is determned by the <class> entry, which
can be any nunmber from zero through 255. [If this option is not

specified, the relocatable output nodule produced by the
Assenmbler wll be assigned the default class nunber of zero
("0"). A nodule's class nunber becones significant when
multiple modul es exist which have identical "filenanmes"; in
such instances, wuse of a different class nunber for each such
nmodul e permits any given nodule to be uniquely identifiable.

This option forces all undefined synbols to default to inported
synmbol s. When this option is not specified, any synbol which is
not inported and also not defined within the file will generate
an error message.

This option prevents an object file from being produced.

C.4.6

COWPI LER ERRCR MESSACES

Compiler error nessages typically occur because of one of three
basic types of "errors" being encountered during compi l ati on. The
nost common cause of an error nessage is that a syntax error of sone
type has been detected in the C source input file. A second type of
error is when the Conpiler cannot, for sone reason, performits
conpilation; for exanple, if the disk becones full while the
Conpiler is attenpting to wite out one of its many tenporary files.
The third type of error is one in which the Conpiler fails to
operate due to an internal bug. This last type of error should, of
course, never occur but a realist should not be totally unprepared
for such a possibility.

Program error nessages have the form
file: <nanme> error at line <line> <nessage>

where <name> is the name of the file involved, <line>is the line
nunber in that file at which an error becane apparent to the
Conpiler, and <nmessage> is a note fromthe Conpiler which indicates
what the Conpiler found unacceptable. Noti ce that the |ine nunber
given is the line in which a syntax error of sone type first becane
evident to the Compiler. This may or may not be the actual line in
the file where the programfirst began deviating from what the
programer may have had in mnd when he was witing it. There is
really no way for the Conpiler to guess what the "real"” error in a
program may be; the Conpiler can only conplain at the point where
the program text subsequently becones syntactically incorrect. This
may be many lines after the Iine which contains the actua
programm ng error. Simlarly, the nmessage which the Conpiler prints
out indicates what the Conpiler sees the problemto be; this may or
may not be the problem as the programer sees it.

The following are some explanations of the |ess obvious error
nmessages produced by the Conpiler.

"whil e' expected
The Conpiler expected a "while" to follow a "do" but instead
found sonet hi ng el se.

arithmetic type required
The Conpiler expected an expression which evaluated to an
arithmetic type, but instead found sonmething else such as a
structure or union.

bad &
The anpersand operator was used on sonething which was not an
| val ue.

bad break

A break was encountered which was not in either a "do",
"while", or "for"” loop, or in a "switch" statemnent.

cC.4.7

bad case
A case | abel statement was encountered whi ch was either outside
of a switch statenent or was al ready defined

bad cast
The Conpiler couldn't force the desired cast. This happens when
one attenpts to cast an integer as a structure, for exanple.

bad conti nue
A continue statenent was encountered which was not in either a
"for", "do", or "while" |oop.

bad defaul t
A default was encountered outside of a switch statenent or el se
more than one default was specified for a given swtch
st at ement .

cannot create output file
The Compiler was unable to create the output file. This is
usual Iy because the disk is full

cannot open #include file
The Compiler was unable to open the specified #include file.
This is often because the user does not have perm ssion to read
the file.

conpi | er bug
You should never see this error. It indicates an internal error
in the second pass of the conpiler

decl aration of paraneter not in parameter |ist
Indicates that a variable was declared in a function header
whi ch was not part of the parameter list for that function.

expressi on stack overfl ow, aborting
The Conpiler's i nternal stack (on which it evaluates
expressions) has overflowed. This can be renedi ed by breaking
up the offending expression into snaller expressions which can
be eval uated separately.

function required
This indicates that sone expression which is not of type
function is being used where a function is required.

illegal #else
An #el se was encountered outside of an #ifdef or #i fndef bl ock.

illegal #undef
This wusually neans that there was no identifier follow ng the
#undef keyword.

illegal array reference

An attenpt was mmde to reference an array in an illega
fashi on.

C.4.8

illegal character
An illegal character was encountered in the input file. This is
usually due to a preprocessor directive which does not begin
in colum 1 but nmay al so be caused by a m ssing open quote or
open coment. Mst control characters are considered ill egal

illegal return type
The return type of a function was not of sinple type. No
structures or unions may be returned as function values
(al though pointers to them may be returned).

| abel used but not defined in function
A |abel was used on a goto but was never defined. Labels are
always local to the function in which they are defined.

| val ue required
This means that the Conpil er expected an expression which could
be wused to represent a changeable value but did not find one.
An lvalue is a value which represents a changeabl e val ue. For
exanple if the variable XX is defined as an integer then it may
be used (al nost) anywhere an integer constant can be used. But
it may also be used in places where it is illegal to use a
constant, like on the left hand side of an assignment operator
Thus XX is an | val ue whereas a constant is not.

mssing "'" or character constant too |ong
This indicates that nore than one character was found in a
gquote constant. Either the termnating """ is mssing or there
is nore than one character between the starting "'" and the
termnating "'". Cnntrol characters which begin with a
backsl ash are considered to be a single character.

m ssi ng nenber name
A reference to a nenber name was nmade whi ch was not declared to
be a nenber of the original structure.

mul tiple synbol definition
Indicates that the synmbol following the dash has been defined
nore than once

no matching #f for #endif
An #endif was encountered but no #ifdef or #ifndef preceded it.

poi nter type required
This indicates that an operation was attenoted on an expression
whi ch should be (but is not) of pointer type.

preprocessor bug #l
You should never see this one. It indicates that there is an
internal error in the first pass of the conpiler

string inproperly term nated: unexpected ECF
This usually nmeans a m ssing cl ose quote.

C.4.9

string too long, truncated at right
This indicates that a string exceeded the maxi mum string
constant length (the current limt is 256 characters, including
the term nating NULL).

struct/union tag used but not defined in block
A structure or union tag was used but not defined in the
current programfile, function, or block

structure/union size unknown
This message is generated when the size of a structure or union
is required (as in the sizeof operator) but is not known
because the struct or wunion definition has not yet been
encount er ed.

too many #define paraneters
Too many paraneters in a #define directive. The current [imt
i s approxi mately 25.

too many nested #ifs

Too many nested #ifdef or #ifndef directives. Thi s incl udes
those due to #include files. The current limt is approxi mately
15.

unbal anced conment
This indicates that the End O File was encountered before a
comrent was conpl et ed. Renenber: Introl-C allows nesting of
comments. Each /* nust have its own */ to termnate it.

undecl ared identifier, assumng auto int
An identifier was encountered which has not been defined. The
Compiler wll assume it was declared as an automatic integer
Notice that this assunption may cause the Conpiler to generate
additional error nessages if the identifier is wused in a
fashion which is not permitted for an auto int.

unexpect ed end of file, unbal anced #if, #ifdef, or #ifndef
The End O File was encountered before an #ifdef or #ifndef was
conpl eted by an #endif directive.

unexpected end of file
The End of File was encountered while the Conpiler was stil
trying to conplete sonme construct. For exanple, if the Conpiler
has not yet encountered the <closing brace of a function
definition and encounters the EOF, it will print this nessage

unmat ched paren or quote in macro call ... end of file
The End O File was encountered while the Conpiler was
searching for an expected close quote or a right paren

unr ecogni zabl e preprocessor directive

This indicates that a # in colum 1 was foll owed by an unknown
directive. Check the spelling of the directive.

C. 4.10

war ni

war ni

war ni

ng - undefined operator on pointer type
This indicates that an operation was attenpted involving a
poi nter which is not permitted on operands of type pointer

ng - expression with no effect, ignored

This indicates that the ConDiler has found an expression wth
no effect. That is, no variable is updated as a result of the
expression. No code is generated for the expression

ng - union or struct as function paranmeter, '& added

This indicates that an attenpt was nade to pass an expression
of type struct or union as a function paraneter. Currently this
is disallowed by the Conpiler. The Conpiler wll insert an
anpersand so that a pointer to the structure wll be passed
i nst ead.

C4.11

C4.12

ASSEMBLER

The Assenbler furnished with Introl-C is a relocating assenbler
designed to transl ate an assenbly | anguage text file, as produced by
the Introl Compiler, into a relocatable object file. This object
file may then be linked, if need be, to other relocatable object
files and | oaded to produce a file which is in executable format.

In normal usage, the Conpiler always automatically <calls the
Assenbl er when the Conpiler, per se, finishes. The Assenbler, in
turn, then assenbl es the output generated by the Conpiler to produce
a relocatable object nobdule as the final result of a conpilation

The relocatable nodule that 1is produced by the Assenbler wll
typically have the same filenane as the original input, file, but
with the fil ename extension ".R' appended

VWen the Conpiler automatically calls the Assenbler, the Conpiler
passes 3 Assenbler option specifiers to the Assenbler; specifically,
the "-n", the "-s", and the "-z" Assenbler options are passed. The
"-n and -S option specifiers prevent the Assenbler from
generating any type of assenbly output |listing and synbol table
listing, respectively; the "-z" specifier causes the Assenbler to
delete its assenbly |language input file (ie the Conpiler's output

file) when it has finished using it. Al t hough the effect of the
Conpi l er-supplied "-z" specifier to the Assenbl er can be overridden
via a conpiler conmand line option (ie with the '-r" Conpiler

option, which forces the Conpiler's output file to be retained),
there is no provision made to simlarly override the automatically
supplied "-n" and "-s" Assenbler options. Al this means is that the
Assenmbler's output listing and synbol table listing wll never be
available as the result of a "conventional" conpilation/assenbly
sequence. The Assenbler's output Ilisting and synbol table are
readily available to the user, however, although a 2-step process is
i nvolved: (1) first, conpiling/assenbling the programwith the "-r"
specified on the conpiler conmand line to "save" the ".Mxx>"
assenbly language file produced by the Conpiler, and (2) then
i nvoking the Assenbler independently to separately assenble this

".Mxx>" file, thereby generating the desired output |I|isting and
synbol table as a result. As noted in the Conpiler section of this
manual, all synbols appearing in any output generated by the
Compiler will will be pre-pended with an underscore character, which

is automatically added to all synbols by the Conpil er.

As inferred by the preceeding conrents, although the Assenbler is

nomnally supplied for wuse by the Conpiler proper, it 1is also
possible for the wuser to independently call the Assenbler for
assenbling assenbly |anguage prograns directly - either assenbly

| anguage files which have been previously produced by the Conpiler

or assenbly |anguage prograns that nmay have been witten by the
user. The ability to independently use the Assenbler in this way is
very useful, for exanple, when the user wshes to include an
assenbly |anguage routine as a part of a larger overall C program
or to produce a separate assenbly |anguage program The remai nder of
this Assenbler Section is concerned with wusing the Assenbler

i ndependent of the conpiler for these types of purposes.

ASSEMBLER COMVAND LI NE

The Assenbler may be called i ndependently by entering a |line of the
form

r<xx> <file> {<options>}

wher e r<xx> represents the Introl filename of the Relocating
Assenbler, <file>is the name of the assenbly | anguage source file,
and {<options>) represents zero or nore Assenbler option specifiers.
The Assenbler's assenbly |anguage input file is expected to have a
filenane extension; if none is explicitly specified, a filenane
extension of the form".Mxx>" is assuned. The output file produced
by the Assenbler will be a relocatable nodule, normally having the
sane nane as the input file, but with the filenane extension ".R'

The "X x>" as used in both the "r<xx>" and the ". Mxx>"
designations nentioned above, represents a 2-digit nunmber unique to
the particular Introl-C conpiler package being used. For those

Introl -C packages that target the 6809 processor, the "<xx>"
represents the digits "09"; for versions that target the 6801 and
simlar processors, "<xx>" represents the digits "01"; for versions
targeting the 6805, "<xx>" represents "05"; for versions that target
the 68000, "<xx>" represents the digits "68"; for versions that
target the NS16000, "<xx>" represents "16"; for versions that target
the 8086, "<xx>" represents "86". Therefore, if the Introl-C package
happens to target the 6809, for exanple, the appropriate filenane
for the Relocating Assenbler would be "r09", and the default
extension assuned for the Assenblerls'input files would be ".M9"

ASSEMBLER OPTI ONS

Assenbl er options are listed and described bel ow. Some of these
options may be legally specified on the conpiler call |ine when the
Assenbler is being called automatically as the result of a
conpil ation. However, nmpbst of the Assenbler options are legal, or
will have neaning, only when the Assenbler is being called
i ndependently by the user

-a
The "-a" option forces all synbols except those that begin with
a question mark, "?", to be placed in the object file. Usually
only the externals and undefi ned synbols are included in the
object file. This Assenbler option may not be legally used on a
conmpiler command line since it conflicts wth the already
existing (and totally different) "-a" option provided for the
Compi | er proper.

-C

This option causes the output listing produced by the Assenbl er
to be sent to the console. This Assenbler option nay not be
legally used on a conpiler command line since it conflicts with

a preexisting (and totally different) "-c" Conpiler option

This option forces listing of all included files. Normally,
included files are not part of the output listing. This option
may not be legally used on a conpiler command |ine since it

conflicts with a preexisting (and totally different) "-i"
Conpi | er opti on.

This option forces all symbols which begin with a question
mark, "?", to be listed in the synbol table. Unless this option
is used, synbols which begin with a question mark are not
listed as part of the synbol table listing. The Introl-C
Compi l er uses such | abels as targets of short junps. They are
not normally listed because they are not generally of interest
to the programmer. This option will have no effect if used on a
compiler command |ine inasmuch as a synbol table is never
generated as a result of a conpiler command line call. A synbol
table may only be produced it the Assenbler 1is invoked
i ndependently to assenbl e an assenbly | anguage file.

-l =<fil ename>

This option specifies that <filenane> is the name of the file
in which the Assenbler's output listing is to be placed. This
causes the listing to be placed in the nanmed file. This option
has no effect if used on a conpiler command line since an
output listing cannot be produced as a result of a conpiler
command line call. An Assenbler output listing can be produced
only if the wuser invokes the Assenbler independently to
assenbl e an assenbly | anguage file.

This option prevents an assenbly output listing from being

pr oduced. Thi s is one of the three Assenbler options
automatically passed to the Assenbler when it is called by the
Conpi | er. This option may not be legally specified on a

compiler comrand line since it conflicts with a preexisting
(and totally different) "-n" Conpiler option.

-o=<fil enane>

This option allows the user to explicitly name the output file,
and assigns the nanme <filenanme> to it. If this option is not
specified, the object file will otherwi se be given the sane
nane as the input file, but wth the filename extension ". R’
If the <filename> that is assigned via this option does not
include a filename extension, the default fil enane extension
".R" will be appended by the Assenbler. This option may be
| egally specified on a conpiler command |ine.

- g=<cl ass>

This option assigns the class nunber indicated by <class> to
the output object file generated by the Assenbler. The <cl ass>
entry may be any nunber fromzero ("0") to 256. |If this option

is not used, the nodule's class specifier will default to being
class zero (ie "0O"). A nodule's class nunber is a file
identification attribute and is usually of inportance only if
identical filenanes are assigned to several separate nodul es by
the user; in such case, the class nunber attribute allows any
specific module to be unanbiguously distinguished from al
other identically named nodul es. This option may be legally
used on a conpiler conmand |ine.

This option suppresses the listing of the synbol table. This
option is one of the three Assenbler options automatically
passed to the Assenbler when it is called by the Conpiler. This
option may not be legally specified on a conpiler conmand |ine
since it conflicts with a preexisting (and totally different)
"-s" Conpiler option.

This option forces all undefined synbols to default to inported
synbol s. Wthout this option any synmbol which is not inported
and also not defined inthe file wll generate an error
nessage.

This option prevents a relocatable object file from being
pr oduced. This option may be legally specified on a conpiler
conmand |i ne.

This option deletes the Assenbler's input file when the
Assenmbler has finished using it. This is one of the three
Assenbl er options passed to the Assenbler when it is
automatically called by the Conpiler: it is the option
responsi ble for causing the the Conpiler's output file to be
normal Iy del eted when the Assenbler has finished using it. The
effect of the "-z" specifier that is normally supplied by the
Conpiler in such case can be nullified by specifying the "-r
Conpi l er option on the conpiler command |line, as was nentioned.
earlier. The '-z" Assenbler option may not be legally specified
on a conpiler command line since it conflicts with a
preexisting (and totally different) "-z" Conpiler option

C.5. 4

DEFI NI TI ON OF LEGAL | NPUT

This section describes the legal input to the Introl Relocating
Assenbl er.

| NPUT FI LE SPECI FI CATI ON

The input file expected by the Assenbler is an ASCI|I text file which
contains assenbler text. If the input file has been generated by the
Compiler it will already have an acpropriate ".Mxx>" extension, as
di scussed previously. |If the file naned on the assenbler call I|ine
has no extension specified, the Assenbler will attach t he
appropriate ".Mxx>" extension before it attenpts to |locate the
file. A file' s extension is assuned to consist of a period and any
trailing characters.

| NPUT LI NE
Each line input to the Assenbler is assuned to have the form

[<l abel >] [<opfield> [<operand>{, <operand>}]] [<commrent >]
or
*<comment >
where <l abel > represents a synbol,
<opfield> represents an opcode or pseudo-op

<operand> represents an expression
and <comment> represents any string of characters.

Those items enclosed in square brackets "[" and "]" are optional

while an itemenclosed in curly brackets, "{" and "}", my be
repeated zero or nore tines. Thus an input |line may consist of an
optional label, followed by at |least one space, followed by an

optional opfield, followed by at |east one space, followed by zero
or nore operands separated by commas, optionally followed by at

| east one space and a comment. If alabel is specified, it nust
begin in colum one. It is also legal to indicate an entire |line as
being a comment by placing a star, "*", in colum one. If no |abe

is specified, colum one nust be a blank or a star. An exanple of a
| egal input line:

loop jnp | oop This is VERY tight | oop
or
* This whole line is a coment

SYMBOLS

Synbols are made wup of letters (a..z, A.Z), digits (0..9), the
question mark (?), the dollar sign (s), the underscore (_) and the
period (.). Synbols must begin with either a letter or a period or
an underscore or a question mark and may be any | ength. In the
special case of synbols that reference C functions, such synbols

must ALWAYS be preceded by a | eading underscore character

J ust
as t he Compiler pre-pends an wunderscore to all synbols it
gener at es) . The first one hundred characters of a synbol are

retained by the Assenbler. Case is not ignhored when the Assenbl er
conpares two synbols: "abc" is NOT equal to "ABC' is NOTI equal to
"AbC .

Valid Synbol s:
. abc
abc09
.9
Very. | ong. synbol .only.the.first.100. characters. count
.. PIA10.

Al t hough one hundred characters are significant to the Assenbler,
when the synbol table is output, only the first sixteen characters
of the synmbol are printed so that the printout wll |ook better

OPCODES

In general, the opcodes recogni zed by the Assenbler are the standard
opcodes, recogni zed by the m croprocessor manufacturer's assenbl ers.
All opcodes can be placed anywhere on the source line after the
statenment |abel, or at |east one space or tab fromthe begi nning of
the source line if no label is present. Opcodes may be in either
upper or |ower case.

PSEUDO- OPS

Pseudo-ops are a set of menonics which represent commands to the
Assenber rather than instructions to be coded. The |egal pseudo-ops
are described below in the section on assenbler directives.

EXPRESSI ONS

The Assenbl er accepts assenbly type expressions that are arbitrarily
conpl ex. Several operators are allowed in assenbly tinme expressions
(alternate forms listed on the sane line are identical in function):

- unary mnus (two's conpl ement)
not (one's conpl ement)

* mul tiplication

/ di vi si on

% nod (remai nder)

+ addition

- subtraction

<< shift left

>> shift right

& bi twi se and

A bi twi se excl usive or

| bitwi se inclusive or
> greater than

< | ess than

>= greater than or equal to
<= | ess than or equal to
== equal to

I= not equal to

Qperator precedence of the above operators is, from
to
lowest (alternate fornms have the sane precedence as regular forms):

* / %

+ -

>> <<

> < <= >=
== | =

&

Parent heses are allowed in expressions to change the precedence of
an expressi on.

Assenbly tine expressions can be wused in the operand of any
assenbl er opcode or directive. Synbols and constant val ues can be
used interchangeably in an expression. All results of expressions at
assenbly tinme are 32 bit, truncated integers. Constant values are
defined as a nuneric digit (0..9), followed by zero or nore nuneric
digits or the letters A .F, followed by a radix indicator

n<r adi x>

where nis 0..9,A .F (nust be a valid digit in the given radix),
preceded by a nuneric digit, and <radix> is

H hexadeci mal
O Q oct al
B bi nary

D or nothing decinmal
An alternate way of specifying constants is by preceding the
constant by the alternate radix indicator followed by one or nore
valid digits in the given radix.

<al trad>n

where <altrad> is

$ hexadeci mal
@ oct al
bi nary

& or nothing decimnal

and n is 0..9,A .F (must be a valid digit in the given radix). No
preceding nurmeric digit is required.

Constants may al so be ASCI| character constants, either one or two
characters | ong:

' <ch> is a one character constant
"<chch> is a two character constant

hi ghest

The Assenbl er al so recogni zes a special constant that represents
t he

assenbly tine |ocation counter: "$" or "*". Wen "$" or "*" is used

in an expression, the value taken is the location counter at the

instant of assenbly of the 1line containing the " g or "*",

Exampl es of Constants:

01010101B
17q

$10
177770

" AB
567H
%09110101
offffh
'@

13

7FFH

$

*

Exanpl es of valid expressions:

(start-end)>2 start mnus end shifted right by two

abc*5 five times the value of abc

"al 80h ascii value of "a' ORed with 80 hex

$+4 val ue of the location counter plus four
*-3 val ue of the location counter mnus three
$FFFF<<(3- LABEL) +* 272277

ADDRESSI NG MCDES

Al addressing nodes of the mcroprocessor are recognized by the
Assenbl er.

ASSEMBLER DI RECTI VES

The following is a list of assenbler directives. An assenbl er
directive is aline which issues a conmand to the Assenbler. Al
assenbl er directives may be in either wupper or |ower case.

comm - Commbn Area
This directive has the form

<| abel > comm <si ze>

where <label>is any legal identifier and <size>is an absolute
expression which indicates the size, in bytes, which should be
reserved for the label. The commdirective has virtually the sane

effect as the inport directive except that, if the Linker cannot

find any definition to satisfy the external reference, it wll
reserve a location in the bss segnent segment of <size> nunber of
byt es. A label may appear in any nunber of commdirectives.

dc - Define Data Constant
This directive has the form

[<l abel >] dc[.<sizecode>l <expression>{, <expression>}

where <sizecode> indicates an optional letter ("b", "W, or 11110)
which indicates the size of the data object (byte, word, or |ong).
The <expression> is an absolute or relocatable expression whose
value is placed in the location. Miltiple |ocations may be defined
by a single dc directive by specifying multiple expressions
separated by comas. Each expression will be evaluated and the
resultant values will be placed in successive |ocations, each of
which is assunmed to be the size indicated by the size code letter
If the size code letter is omtted, the size is assuned to be the
size of an integer (2 bytes). |In the case of the dc directive it is
permtted to have an expression of the form

'<string>'

where <string> is one or nore ASCI|I characters. The characters wll
be packed into successive bytes.

ds - Define Data Storage
This directive has the form

(<l abel >] ds[.<sizecode>] <size>

where <sizecode> indicates an optional letter ("b","w',or "I") which
i ndi cates the size of the data object (byte, word, long). The <size>
indicates the nunber of data objects for which space is to be
reserved. The nunber of bytes reserved is the <size> multiplied by
the size of the data object (1, 2, or 4 bytes).

end - End of Assenbly
This directive has the form

end [<l abel >]

where [<label >] is an optional |abel which, if specified, causes the
output nodule's entry point to be set to that indicated by the
| abel . The | abel should be an external |abel which nust have been
defined before the occurrence of the "end" directive. This directive
is used to signal the end of input for the Assenbler.

equ - Equate Svnbal Wth A Val ue
This directive has the form

{<l abel >} equ <expression> {<comment >}

The equ directive gives the value of the expression in the operand

to the label. The [abel and operand are both required with an
equ

directive; the conment is optional. The equ directive is simlar in
function to the "set" directive except that a synbol defined with an

equ cannot be redefined el sewhere in the program The <expression>

cannot contain external references, forward references, or undefined

synbol s; it may, however, be relocatable.

one equ 1 equate the value 1 to one
five equ one*5 equate the value one times 5 to five

err - Progranmer-Cenerated Error
This directive has the form

err {<string>}

The err directive will cause an error nessage to be printed by the
Assenbl er. The total error count will be incremented as with any
other error. The err directive is normally used in conjunction wth
conditional assenbly directives for condition checking. The assenbly
proceeds nornally after the error has been printed. The optiona
{<string>} may be used to specify the nature of the error generated.

export - External Synbol Definition
This directive has the form

export <symnbol >{, <synbol >, ..., <synbol >} {<comment >}

The export directive is used to specify that the list of synbols is
defined within the current source program and that these synbol
definitions should be passed to the Linker so other prograns may

reference them If the synbols contained in the operand of this
directive are not defined in the program an error wll be
gener at ed.

fcb - Form Constant Byte
This directive has the form

{<l abel >} fcb <expression |ist> {<coment >}

The fcb directive allows the programmer to define a byte constant or
series of byte constants. The <expression list>in the fcb operand
is a sequence of one or nore expressions separated by commas. The
value of each expression is truncated to 8 bits and stored as a
single byte in the object program Miltiple expressions are stored

in successive bytes. |If a field between two commas is enpty, a zero
value is stored for that byte. The | abel and comment fields are
optional. An error will occur if the wupper eight bits of each

expression in the operand do not evaluate to all zero's or al
one's.

tabl e fcb 0,1, 2, 3,0fh, 27q, 7

fecb 0,,,,,,,,,0 ten zero bvtes
fcb five, one, 4*5,' A

C.5.10

fcc - Form Constant Character
This directive has the form

{<l abel >} fcc <delimter><string><delimter> {<coment >}
-Or-
{<l abel >} fcc <expression>, <string> {<coment >}

The fcc directive converts a string of characters into a sequence of
bytes containing the characters' ASCII-values. Two forms of the fcc
directive are available. The first form above delimts the string to
be saved by a delimter character which can be any character except
the nuneric (0..9) digits. The delimter character cannot appear in
the given string. The second formof the fcc directive takes two
argunents, separated by a comma. The first argunment is an expression
representing the length of the subsequent string. The expression
argunent of the fcc directive nust begin with a nuneric (0..9)
digit. The length expression represents the exact |length of the
resultant string: if the given string is longer than this |ength,
the string is truncated; if the given string is shorter than this
length, the string is expanded with spaces (ASCI1 20H). Wen the
| ength expression is longer than the given string, there is a danger
that a comment, if one is given, may be taken as part of the string.
It is usually better to I|eave comments out of this type of fcc
directive.

nsgl fcc "this is a string' "'" is the delimter
fcc /this is another string/ "/" is the delimter
ns92 fcc 64,this is yet another
fcc 26, abcdef ghi j kl mopqr st uvwxyz
fcc [abcdef ghi j kI mopqr st uvwxyz/

The last two exanples save exactly the sanme sequence of bytes in
menory: the 26 | ower case al phabetic characters, in order

fdb - Form Doubl e Byte Constant
This directive has the form

{<l abel >} fdb <expression |ist> {<coment >}

The fdb directive is simlar to the fcb directive above except that,
whereas the fcb directive causes each expression in the Ilist to be
taken as a byte value, the fdb directive instead causes each
expression to be taken as a double byte, or word, val ue.

address.tabl e
fdb routine.l,routine.2, routine.3
fdb routine. 4, routine.6
address.table.l ength equ ($-address-table)/2

fdb 1024*48, address. tabl e, address.tabl e. | ength
fdb "AB, 01010101B, 37D

C 5. 11

ident - identify nodul e
This directive has the form

i dent <nanme>, <cl ass>, <rev>

where <nane> will be the nane of the output nodule, <class> is an
integer from"C' to "255" which specifies the class nunber to be
given the resultant nodule, and <rev> is a revision nunber to be
given the resultant nodul e. If the class or revision nunbers are
left wunspecified they will default to zero (0). If the nodule nane
is left unspecified it will default to the filename of the assenbly
| anguage input file, mnus any extension.

i nport - External Synbol Reference
This directive has the form

i mport (<loc>:]<syn®{,[<loc>]<synp}

where <loc> represents an optional |ocation counter specification
and <syne is sonme synbol to be inported. The inport directive is
used to informthe Assenbler that the naned synbols are referenced
by the current source program but are defined el sewhere. Each synbol
inthe list my be preceded by an optional absol ute expressi on whose

value nust be between 0 and 15. The expression indicates the
| ocation counter the corresponding synbol is assuned to be under
The Linker wll issue an error nessage if the synbol has been

specified wunder a different |location counter than the one listed on
the inport directive.

If inmport is not used to specify that a synbol is defined in another
program an error will be generated, and all references to the
synmbol in the current programwll be flagged as bei ng undefi ned.

lib - Load A D sk File
This directive-has the form

lib <fil enane>
The 1lib directive makes it possible to read a disk file as part of
the assenbly process. The file is used as if is were actually a part
of the source code being assenbled. The <fil ename> argunent shoul d
be a valid file nane for the systemyou are using.
l'ib MYFILE M@

i st
This directive has the form

l'ist
The list directive reverses the effect of a previous nolist

directive. (See the nolist directive below for a description of its
function).

C.5.12

| oc
This directive has the form

| oc <counter>

where <counter> is an integer within the range 0O to 15. Thi s
directive indicates that all code generated until the next "loc"
directive will be placed under the nanmed |ocation counter.
nol i st

This directive has the form
nol i st

The nolist directive prevents the code following it from bei ng
listed in the assenbler output listing. The nolist directive works

in conjunction with the "list" directive, decribed earlier, to
bracket code which is not to appear in the output listing. A nolist
is in effect until a Ilist directive appears. The Iist and noli st
directives may be nested; therefore, in order to nullify two

successive nolist directives, the Assenbler nust subsequent |y
encounter two successive list directives.

of f set
This directive has the form

of f set <expression> (<coment >)

The offset directive allows the user to generate |abels whose val ues
represent absolute offsets fromsome origin. This is wuseful in
defining |abels which are to be used as offsets into predefined
t abl es.

offset O set offset at zero
dat a ds. b 2 set | abel "data" equal to O
dat a2 ds. b 1 set | abel "data2" equal to 2

C. 5.13

rnb - Reserve Menory Bytes
This directive, whichis identical to the ds.b formof the ds
directive discussed previously, is defined as foll ows:

{<l abel >} rnb <expression> { <comment >}

The rnb directive causes the |ocation counter to be increnented an

amount specified by the expression in the operand field. Thi s
reserves an area in nmenory whose length, in bytes, is equal to the
val ue of the operand expression. The nenory area reserved by the rnb
directive is uninitialized by the directive. The expressi on cannot

contain external references, forward references, or undefi ned
synmbols. The | abel and coment fields are optional

xt abl e rmb 256 save 256 byte for xtable

rmb 20 save 20 bytes for the stack
st ack
dat a rmb 1024*4 save 4K for data area
buffer.l ength equ 132
buf f er rnmb buffer.length reserve buffer space

set - Set Synmbol To A Val ue
This directive has the form

<l abel > set <expression> {<comment >}

The set directive assigns the value of the expression to the |abel
Function of the set directive is simlar to that of equ except that
| abel s defined using set can have their values redefined in another
part of the programby using another set directive. The set
directive is useful for establishing tenporary or re-usable counters
Wi t hin nacros.

syn - Equate Labels
This directive has the form

<synbol > syn <synbol >

where <synbol> is any previously defined synbol. This directive
makes the first synmbol synononbus wth the second synbol. The new
synmbol has all the attributes of the original. Thus the user nmay

redefine opcodes, register nanes, |labels, or any other synbol.

C.5.14

DEFI NI TI ON OF | NTRCL-C

Thi s section provides a detailed definition of the Introl-C
i npl enentation of the C programm ng | anguage. It assunes the reader
already has a reasonable understanding of "standard®" C and is not
intended to serve as a tutorial on the C | anguage.

LEXI CAL CONVENTI ONS

WHI TE SPACE

Bl anks, tabs, new ines, and conments are considered "white space"
For the nost part the Conpiler ignores white space, although
occasionally white space may be required to separate otherw se
adj acent identifiers, keywords, and constants.

COWENTS

The character conbination slash star (/*) indicates the begi nning of
a comment. Comments nust be terminated with a star slash conbi nation
(*/). Comrents are considered white space and have the sanme effect
as a blank. Introl-C allows coments to be nested, permitting |arge
sections of code (which may already contain conments) to be
"commented out" by sinply bracketing the section with /* and */.
This is not possible in "standard" C since standard C does not all ow
nesting of coments. Introl-C provides a Conpiler option (the "-s"
option) to permt the wuser to override this "nesting of conments”
feature if the user wishes to disallow nested comments. Each slash
star (/*) conbination used in a comment requires that a matching */
term nator also appear in the coment. That is, the foll owi ng may
not do what you woul d think

/* This comment /* doesn't end at this term nator -> */
Comments are renoved fromtext before preprocessor directives are

eval uated; thus preprocessor directives may al so be "conmented out™
by bracketing themwith /* and */.

| DENTI FI ERS
An identifier consists of an Al phabetic letter followed by zero or
nore letters or digits. There is nolimt on the nunber of

characters which may be used to specify an identifier, although only
the first ninety (90) characters will be considered significant. A
Compiler option (the "-y[=<n>]" option) is provided to permt the
user to set the maximumidentifier length to values |less than the
normal maxi mum of ninety characters. The underscore, (_), counts as
a letter. Upper and lower <case letters are considered to be
different.

KEYWORDS
The following identifiers are reserved and nmay not be redefined by
t he user.

auto doubl e i nt struct
br eak el se | ong swi tch
case extern register typedef

char fl oat return uni on

conti nue for short unsi gned
def aul t got o si zeof whil e

do i f static

CONSTANTS

Integer Constants: Integer constants nmay be represented in severa
different formats. A string of digits beginning with a 0 (zero) is
taken to be in octal; the digits 8 and 9, if used, are taken to have
the octal values 10 and 11 respectively. If the constant begins wth
an Ox or OX (zero x) it 1is taken to be hexadecinmal and the
characters A through F (either upper or |ower case) nmay be used to
represent the decimal values 10 through 15 respectively. If there is

no preceding O or Ox or OX, the constant is taken to be decimal. A
deci mal constant which is greater than the | argest signed integer is
taken to be a |long. An octal or hexadecimal constant which is

greater than the largest wunsigned integer is taken to be |ong.

Long Constants: Long constants may be declared explicitly. A
deci mal , hexadeci mal, or octal constant which is termnated with the
letter L (either upper or lower case is permtted) is taken to be

| ong. Long constants are inplenmented in 32-bit two's- conpl enent
form
Character Constants: A character constant is any graphic or

non- graphic character enclosed in single quotes; x" for exanple.
The value of a character constant taken to be the nunerical val ue
used to define that character in the machine's character set
(usually ASCI1).

The single quote character ('), the backslash character (\) and
various non-graphic characters may be represented by the foll ow ng
character conbinations:

new i ne \n
hori zontal tab \ 't
backspace \'b
i nef eed \
carriage return \r
formfeed \ f
backsl ash \\
singl e quote \
bit pattern \ddd Where ddd is 1,2 or 3 octal digits

whi ch specify the character's val ue.

*Not e: Introl-C normally interprets "\-n" (ie the newine
character in C) as being a linefeed character; however, a
Compi l er option (the "-z" option) nmay be used to instead equate
"\n" with being a carriage return character.

Unless a backslash is wused in one of the above character
conbi nations, the backslash wll normally be ignored. Character
constants are represented as a single 8-bit unsigned byte.

Fl oati ng Constants: A floating point constant consists of an integer
part, a decimal point, a fractional part, and an exponential part.
The integer and fractional parts each consist of a string of one or
nmore digits. The exponential part consists of an "E' (either upper
or lower case), followed by an optionally signed integer. Either the
integer part or the fractional part (but not both) may be nissing;
either the decimal point or the exponential part (but not both) may
be m ssi ng.

Strings: A string consists of a sequence of zero or nore characters
pl aced between a set of double quote marks, as in "this is a
string". A string has the type Array O Characters and thus may be
used anywhere an array of characters would be appropriate. Al l
strings are treated as uniquely distinct data objects, even when
they contain identical sequences of characters. The Conpiler wll
place a null byte (\0) at the end of each string so that functions
whi ch scan the string can determine its end by the usual nmeans. All
the conventions for representing non-graphic characters which apply

to character constants apply to strings as well. To represent a
double quote inside a string it is necessary to precede it with a
backsl ash. Strings may be continued on a new line by inserting a

backsl ash followed i medi ately by a carriage return. The backsl ash
carriage return conbination is not considered part of the string

PRE- PROCESSCOR DI RECTI VES

A preprocessor directive is an instruction to the preprocessor
(lexi cal scanner) which controls the input to the Conpiler proper
These directives control such things as file insertion (#include),
t ext ual substitution (#define), and condi tional conpilation
(#i fdef). Pre- processor directives always start with a pound sign
(#) and must begin in columm one. The effect of these directives is
the controlled alteration of the programtext input to the conpiler
The directives supported by Introl-C are #define, #else, #endif,
#i fdef, #ifndef, #i nclude, #undef. Their function is explained
bel ow.

#define: The #define directive allows an identifier to be equated
with a string. There are two forns of the define directive. One case
handl es sinple string substitution, in which a token-string will be
substituted for any occurrence of the identifier which appears in
the programtext following the #define statement. The ot her case
allows paraneter substitution, so that sections of the replacenent
string may be specified at the place in the code where the
identifier is used. The first case of the #define directive, calling
for sinple string substitution, has the follow ng form

#define <identifier> <string>

where <identifier> represents the name of the identifier and
<string> is any series of characters. The <string> is optional

There nust be at | east one space between the word #define and the
identifier. This formof the define statement causes any occurrence

of the identifier which appears in the programtext follow ng the
define statement to be replaced with the strings. Notice that there
is no semcolon required at the end of a #define directive. The
<string> is taken to be all the characters which followthe
identifier on the #define line. Thus, it is incorrect to place a
semcolon at the end of the line wunless it is actually intended to
i nclude a semi colon in the replacenment string.

The second formof the #define directive |ooks |ike this:
#define <identifier>(<identifier> ...,<identifier>) <string>

This formof the define statenent (called a macro definition) has a
set of paraneters following the first identifier. Notice that the

left parenthesis of the parameter |ist nust inmmediately followthe
first identifier with no intervening white space. |If there is any
white space following the identifier, the preprocessor wll

interpret the #define statement as being of the sinple string
substitution type described above and will treat the paraneter |ist
as if it is part of the <string> The paranmeter list consists of a
series of identifiers separated by conmas. Each identifier in the
paraneter |ist should appear at |least once in the <string> Wen the
defined identifier appears in the programtext it may be foll owed by
an argument list enclosed in parentheses and containing strings
separated by commas. |If so, these strings will be substituted for
their respective paraneter identifiers in the <string> of the define
statement before the <string> replaces the identifier in the program
text.

The #define preprocessor directive has the additional effect of
"defining" an identifier for wuse wth the #i fdef and #ifndef
preprocessor directives. It is permissible to have a #define
statement with no <string> paraneter; this will sinply "define" the
identifier within the preprocessor.

#else: This directive nodifies the effect of a previously decl ared,
non-term nat ed #i f def or #i fndef conditional conpilation
preprocessor directive. If the lines preceding #else were being
i gnored because of an #ifdef or #ifndef, the #else directive wll
cause the lines following the #else to be processed. Likewise if the
lines preceding #else were being processed because of an #ifdef or
#ifndef, the lines followng the #else will be ignored. The effect
of the #else directive [asts until an #endif directive is
encountered. The #else directive has the following form

#el se

#endif: This directive termnates the the nmobst recent previously
declared #ifdef or #i fndef directive. It has the follow ng form

#endi f

#ifdef: The #ifdef directive is used to denote the starting point of
a section of code which is subject to conditional conpilations. This

C.6.4

directive has the form

#i fdef <identifier>

where <identifier> represents an identifier nane. If the naned
identifier is currently "defined" in the preprocessor, the lines
following the #ifdef directive wll be processed until an #else
control line is encountered or, in the absence of an #else, until
the #endef directive is encountered; any lines between #else (if
present) and #endef are ignored for this case. |If the identifier

naned on the #ifdef lineis NOI currently defined, then only the
lines between the #else (if present) and the #endef termnator line
will be processed. An identifier is taken to be "defined" if it has
previously appeared as the identifier on a #define preprocessor
directive line. An identifier is taken to be "undefined" if it has
previously appeared on an #undef preprocessor directive line, or if
it has never appeared on a #define directive |ine.

#ifndef: The #ifndef directiveis simlar in function to #ifdef,
above, except that conpilation of subsequent code is conditiona
upon an t he identifier being currently "undefined" in the
preprocessor. The #ifndef directive has the form

#i f ndef <identifier>

where <identifier>is the identifier nane. |If the nanmed identifier
is NOT currently defined, subsequent I|ines will be processed until
an #else control line is encountered or, in the absence of an #el se,
until the #endif directive is encountered; any |lines between #el se,
(if present) and #endef are ignored in this case. |If the identifier
naned on the #ifndef I|ine IS currently defined, only the |ines
between the #else directive (if present) and the #endef term nator
line will be processed. An identifier is taken to be "undefined" if
it has previously appeared as the identifier on an #undef

preprocessor directive line, or if it has never appeared on a
#define preprocessor directive line. An identifier is taken to be
"defined" if it has previously appeared on a #define preprocessor

directive line.

#i nclude: The #include directive causes the file specified on the
#include line to be inserted in the programtext in place of the
#include line. Either of the following forns are permtted:
#i nclude "fil enane"

or

#i ncl ude <fil enane>

where filenane is the nanme of the file to be included. Notice that
the Introl-C conpiler allows either angle brackets or double quotes

to surround the filenane. Included files may thensel ves contain
i nclude statenents; that is, #include directives nmay be nested, with
a limt inposed only by the constraints of the operating system

#undef: The #undef directive causes the naned identifier to be
"undefined". Thus any subsequent #ifdef and #i fndef directives which
reference the identifier will operate as if it was never defined. It
has the form

#undef <identifier>

where <identifier> is the nane of the identifier that is to be
undef i ned.

DATA CONVENTI ONS

Al user defined identifiers have two attributes, (1) storage class
and (2) type, which are described bel ow

STORAGE CLASS

An identifier's storage class indicates the |location, scope and
lifetime of the storage associated with the identifier. There are
four different storage classes: auto, extern, static, and register.

auto: Automatic variables are local to the block or function in
whi ch they are defined. They exist only while the block or function
in which they were defined is executing. Their contents are
di scarded upon exit fromthe bl ock. Variables in a function which
are not explicitly defined as having a specific storage class are
assuned to be automatic (ie auto) variables

extern: External variables exist for the entire execution of the
program and retain their values throughout the execution of the
pr ogram An external variable may be referenced by any function in
the programfile in which it was defined. Al so, separately conpiled
program files which declare external variables of the sane nane
refer to the same variable, thus allow ng conmmunication between
separately conpiled programfiles.

In Introl-Cthere is little distinction nmade between an externa

"definition" and an external "declaration". It is possible to Iink
several files together in which an external variable has been
declared but never defined; the linker wll sinply define the

variable to fit the declarations. It is also permtted to link files
in which an external variable has been defined nmore than once; the

linker wll sinmply treat the extra definitions as if they were
decl arati ons. The linker will issue a warning if an externa
variable has multiple inconpatible definitions in a group of files
to be Iinked. An external variable may be initialized only once

anong all the programfiles-to be |inked together

register: The idea behind the register storage class is that it nmay
be desirable to have a frequently wused variable stored in a high
speed register. The register storage class is a hint to the conpiler
that it should, if possible, place this variable in a high speed
register. 1In the case of Introl-C, the conpiler makes nost of these
kinds of decisions onits own. Specifying a variable as being of

regi ster storage class is not guaranteed to cause the variable to be
placed in a register. In fact, Introl-Cregister variables are
i dentical to auto variabl es.

static: The scope of a variable declared with a static storage cl ass
is limted to the block, function, or file in which it was defined,
much 1|ike an auto variable. Unli ke an auto variable, however, the
contents are not discarded when the block containing the variable
termnates. That is, the contents of a static variable remain valid
bet ween i nvocations of the defining block or function.

typedef: The typedef storage class does not actually assign storage
but is sinply a nechanismfor associating an identifier with a data
type. It is included here because it is syntactically identical to a
storage class specifier. Once an identifier has been included in a
typedef declaration it may be used in place of a type specifier in
subsequent type decl arations.

TYPE
The second attribute that may be specified for an identifier is its
type. Types may be divided into two main classes, the first being

the "fundanental" class of data types and the second the "derived"
class of types. The derived types conprise a conceptually infinite
class of types which may be constructed from conbinations of
fundanmental types or already defined derived types. The presently
supported fundamental types are:

char
i nt
fl oat

where int nmay be optionally preceded by one of the
modi fiers: short, |ong, or unsigned

The derived types are as foll ows:

arrays of objects of nost types

functions which return objects of various types
pointers to objects of any type

structures of objects of nost types

uni ons of objects of nost types

The fundamental types are discussed individually bel ow

char: A character variable is defined to be |arge enough to store
any character fromthe machine's character set (assumed to be ASClI)
as a positive nunber. All character variables are inplenented as 8
bit Dbytes. The Introl-C Conpiler treats character variables as
unsi gned quantiti es.

int: integers are used to represent integral quantities. |Integer
data objects can be declared in various sizes or as signed or
unsigned by wuse of an optional nodifier (or the |lack thereof).
integers cone in up to three sizes: "short int", "int", and "long

int". Short integers are guaranteed not to be longer than an
i nteger. Integers are guaranteed to not to be |I|onger than a l[ong
i nteger. In Introl -C short integers are 16 bit quantities and | ong
integers are 32 bit quantities. Normal integers are whatever |ength
is nost appropriate for the nmachine in use. (Refer to the other
Appendi ces of this manual for further information on integers which
is specific to the target mcroprocessor.) Al signed integers are
represented in 2's conplenent form Unsi gned integers represent
positive quantities.

float: Floating point nunbers are represented in the | EEE standard
floating point format. A floating point variable is allocated 32
bits of storage which is interpreted by floating point functions in
the followng way: the npst significant bit is interpreted as the
sign of the nunber; the next 8 bits are interpreted as a biased
exponent; the remmining 23 bits are interpreted as a nornalized
manti ssa preceded by an assumed bit which is always set to 1
Fl oati ng poi nt nunmbers cover the range from approximately 8.43 tines
10 to the -37th power to 3.37 tinmes 10 to the +38th power. It is
al so possible for floats to take on values outside this range. Such
values are used to represent positive and negative infinity (+inf,
-inf), and Not-a-Nunber (NaN). In the case of NaN the variable wll
be encoded in such a way as to contain an error code and an address
whi ch indicates where and under what circunstances the NaN occurred.

Various printing routines wll actually print out "+inf" for
positive infinity, "-inf" for negative infinity, and "NaN' for
Not - a- Nurber . In the case of NaN, two nunbers separated by conmas

may be printed following the NaN, the first represents an error code
and the second the address which was encoded in the nunber. (See
printf and atof in the Standard Library vol une).

The derived data types are described bel ow

Arrays: An identifier may represent an array of any type except
function. Notice that an array MAY be of type pointer to function
and indeed this is usually what is meant when one refers to an
"array of functions.”

In expressions, array identifiers are converted to a pointer to the
first nenber of the array. The converted identifier is, of course,
not an lvalue and thus my not be nodified as an actual pointer
m ght . By definition, the expression E[E2) is identical to
*((El) +(E2)). The rules for adding a pointer to an integer state
that the result is a pointer whichis offset from the origina
poi nter by a number of bytes equal to the integer nultiplied by the

size of the object to which the pointer points. Thus if El is an
array or pointer, and E2 is an integer, then both E[E2] and
*((E1l)+(E2)) refer to the E2th elenent of E . Milti-dinmensiona
arrays are sinply inplemented as arrays of arrays. That is,

EI[E2](E3] is identical to (E1[E2])[E3]. Milti-dinmensional arrays
are stored rowwise in nenory (the rightnmost subscript varies
fastest).

functions: An identifier may represent a function which can be

declared as returning any one of the fundanental types as well as a
pointer to any type. A function identifier may represent two
different things. If it is followed by a set of parentheses (which
may contain a parameter list) it is interpreted as a function call
otherwise it is interpreted as the address of the function

pointers: An identifier may represent a pointer to any type. A
pointer to a type may be thought of as a variable which contains the
address of an object of that type. That is, a pointer to integer
contains the address of sone variable of type integer. It is
possi ble for a pointer to point to nothing, in which case it is said
to equal NULL; this is signified by setting the pointer equal to
zero. Only three mathematical operations are defined for pointers. A
pointer may be added to an integer, in which case the result is a
pointer which is offset fromthe original pointer by a nunber of
bytes equal to the integer multiplied by the Ilength of the object
pointed to. This has the sane effect as specifying the pointer with
the integer as an index (see arrays above). An integer may be
subtracted froma pointer, wth an effect identical to adding the
negated integer to the pointer. Thirdly, a pointer may be subtracted
from another pointer, in which case the result is an integer
representing the nunber of objects separating the objects being
pointed at. This |last operation is defined only when both pointers
point to objects in the sanme array.

structures: An identifier may represent a structure whose el enents

may be of any type except "function". (See the note in "Arrays”
above). A structure allows a set of variables of various types to be
grouped under a single name for convenience. The only operations

which can be performed on a structure are (1) to take its address
(using the "&" operator), and (2) to access one of its menbers.
Functions nmay not be assigned or copied as a unit nor nmay they be
passed to or returned fromfunctions (pointers to structures may be
passed to and returned from functions, however). Wen referencing
structure menber s t hr ough poi nters, t he const r uct
(*<Pointer>).<menber> is equivalent to <pointer> ><menber>, where
<pointer> is an expression which evaluates to "pointer to structure"
and <menber> is a nmenber of the structure pointed to.

Introl -C provides separate nanme spaces for all structure and union
menber nanes, allowing identical nenber names to be wused in
different struct or union declarations with no restrictions. Thus,
two different structures may each have a nenber with the sanme nane.
Anot her advantage to having all structure and uni on nenber names in
separate name spaces is that the Conpiler can do nore extensive
type-checking of structure references. To access a nenber of a
struct or union through a pointer expression, the pointer expression
must be of type pointer to the particular structure or -union in
guestion. This type checking can be overridden if desired by using a
cast to cast the pointer to the type of the structure to be
accessed.

unions: An identifier may represent an object which can contain any
one of several types of any type except function. (See arrays).

Introl -C provides separate nanme spaces for all structure and union
menber nanes, allowing identical nanes to be wused in different
struct or union declarations. Thus, tw different unions may each
have each have a nenber with the sane nane. The Conpiler will flag
as an error a reference to a union or structure nmenber which is made
with a pointer which is not of type pointer to the wunion or
structure referenced. If it is desired to defeat this type-checking,
the pointer in question nmay be cast as a pointer to the union or
structure to be referenced. (See "structures" above).

DECLARATI ONS

Decl arations are the mechanismfor associating an identifier with a
type and storage class. There are two main types of declarations,
Data Decl arations and Function Definitions.

DATA DECLARATI ONS

A data declaration consists of an optional storage class specifier,
foll owed by an optional type nodifier, followed by an optional type,
followed by zero or nore declarators (each of which may be foll owed
by an initializer) separated by commas, followed by a semn colon
";". The storage class specifier may be any of the follow ng:

auto
extern
register
static

t ypedef

A type nodifier may be any of the foll ow ng:

| ong
short
unsi gned

A type may be any of the foll ow ng:

char

i nt

fl oat

struct <identifier> {<menber decl arati ons>}
union <identifier> {<nenber decl arations>}
<t ypenane>

A declarator may be an identifier, or a declarator enclosed in
parent heses, or a declarator preceded by a star, or a declarator
followed by a set of enpty parentheses, or a declarator followed by
a set of brackets which may optionally enclose a const ant
expr essi on.

All itens are optional except the declarator. |f the storage class
is not specified and the declaration is wthin a function
definition, then auto will be assuned; otherwise extern wll be

assuned. Type nodifiers may appear only for a type of int, or when

C.6.10

the type is left unspecified. If the type nodifier is not specified,
int will be assuned.

The typedef storage class specifier does not reserve storage but is
used to associate an identifier wth a data type. It is included
here because, from a syntactical point of view, it is a storage
cl ass specifier.

For structure and wunion types either the <identifier> or the
(<nmenber decl arations>) part may be omtted (but not both). That is,
a structure or union type consists of the follow ng: the keyword
"struct" or "union", followed by an optional identifier, optionally

followed by a set of braces which enclose a list of menber
decl arati ons. A menber declaration consists of an optional type
specifier followed by zero or nore declarators where declarators are
as defined above. The <identifier> part may appear wthout the

{<menmber declarations>) part, provided that the same identifier has
previously appeared in a structure definition which included the
(<nmenber decl aration>) part.

The type may be a <typenanme>, where <typenane> was a previously
declared identifier in a declarator which appeared in a declaration
havi ng a storage class of "typedef".

| NI TI ALI ZERS

As nentioned above it is possible for a declarator to be foll owed by
an initializer. The initializer is a vehicle by which the progranmer
may specify the initial value of a variable. For external and static
variables the value is set once, logically, at conpile tine. For
automatic variables the value is assigned to the variable on each
entry to the function (ie at run tine).

The syntax for the nost general use of initializers, as applied to
external or static variables, is as follows: an equal sign

followed by an initializer-list. The initializer-list may consist of
a constant expression or an open brace, "C', followed by zero or
more initializer-lists separated by commas, followed by a closing
brace, ")". The constant expression is defined below in the
par agr aph on "Expressions”.

VWen the itemto be initialized is a scalar, (char, int, |ong,
float, pointer), the initializer my consist of only a single
constant expression which may, optionally, be enclosed in braces,

L

For any itemwhich is an aggregate, such as a structure or array,
the initializer consists of an initializer-list enclosed in braces.
The initial values are applied to each elenent of the structure or
array in the order in which they appear. If fewer val ues appear than
there are elements in an array or nenbers in a structure, then the
remai ning el enents or nmenbers are initialized to zero.

Thi s definition nmay be applied recursively to aggregates of
aggregates (sub-aggregates) so that the values of elenents of

C.6.11

sub-arrays and sub-structures may be explicitly defined. The
symantics for subaggregate initialization are as foll ows:

| f the initializer-list begins with a left brace, then the
succeeding initializers, up to the next right brace, apply to the
sub-aggregate. If a right brace is encountered before all the val ues
of the sub-aggregate are initialized, the succeeding nenbers of the
sub- aggregat e are initialized to zero. |If the sub-aggregate
initializer-list does not begin with a left brace, then as nany
elements from the initializer-list are wused as is necessary to
initialize all the nenbers or elements of the sub-aggregate.

It is not permtted to initialize variables of type union

In the case of an array in which the size is not specified, the
Conmpiler will set the size of the array to the nunber of initialized
val ues specified for it.

In the special case of a character array the initializer may take
the formof a constant string. The array will be initialized such
that each element of the array is set to the value of the
correspondi ng character in the string constant. The term nati ng NULL
is also considered part of the initializer and is encoded in the
array. As above, if the size of the array is left unspecified the
size wll be the same as that of the NULL term nated string which
initializes it.

The syntax for an initialized automatic variable is slightly
different than for that of an external or static variable. It may
consi st of an equal sign, "=", followed by an expression which nmay,
optionally, be enclosed in braces, "(", and ")". Notice that this
definition allows an arbitrarily conplex expression which may
i ncl ude constants, functions, and previously declared variabl es. The
expression nust evaluate to a scalar or float; it is not permtted
to initialize aggregate (structure or array) automatic vari abl es.

FUNCTI ON DEFI NI TI ONS

A function definition is the nmechanismby which a code segnent is
defined. Mst prograns include a function called "main" which is, by
default, the function executed when the programstarts. A function
definition is indicated by an optional storage class specifier
followed by an optional type nodifier, followed by an optional type
specifier, followed by a declarator followed by a set of parentheses
which enclose zero or nore identifiers, followed by zero or nore
data declarations, followed by a conmpound statenent. The storage
cl ass specifier may be any of the foll ow ng.

extern
static

The type nodifier may be any of the follow ng.

| ong
short

C.6.12

unsi gned
The type may be any of the foll ow ng.

char

i nt

fl oat

<t ypenane>

If the storage class is static, then the function will be known only
in the programfile in which it was defined; otherwise it will be
known externally. If the storage class is omtted the function
defaults to external. The type nodifiers may be used only for
functions whose type specifier is int or wunspecified. The type
specifiers in conjunction with the declarator formindicate the type
of the function's return val ue. The type of the return value may
only be char, int (long, short or unsigned), float, or pointer. |If
the type specifier is omtted it defaults to int.

ABSTRACT TYPE DECLARATI ONS

There are two cases in which it may be necessary to refer to a data
type wthout referring to any particular identifier. One of these
cases involves the cast nmechani smand the other involves the sizeof
operator. In either case it may be necessary to specify an abstract
type. An abstract type is indicated by an optional type nodifier
followed by a type specifier, followed by an abstract declarator
where an abstract declarator is defined the sane as a nornal
decl arat or above except that no identifier is permtted. That is, an
abstract declarator may be a null sequence of characters, or an
abstract declarator preceded by a star, or an abstract declarator
followed by a set of brackets (which may contain a constant
expression), or an an abstract declarator followed by an enpty set
of parentheses, or an abstract declarator encl osed in parentheses.
In the last case the sequence of characters inside the parentheses
may not be null. 1In the case of a cast, either the type nodifier or
the type specifier, but not both, my be omtted. If the type
specifier is omtted int is assuned.

EXPRESSI ONS

An expression is any construct which returns a value. The C | anguage
is very general about expressions. Expressions include constants,
strings, identifiers which have been suitably decl ared, and
expressions enclosed in parentheses. The result of any expression
operation on an expression is also an expression. An expression may
have side effects. This means, for exanple, that a variable my
become changed in the process of evaluating an expression. This is
typical of function calls but may also occur in sone of the
arithmetic expressions, as with the increnent operator (x++) where
the variable is incremented after its value is taken

A stringis in all cases treated |ike an array of characters. A

string is the sane syntactically as a character array identifier and
thus is of type pointer to character when used in an expression

C.6.13

Any expression may be enclosed in parentheses. The effect is to
cause the enclosed expression to be conpletely evaluated before
operators external to the parentheses are applied. The resul t ant
type and val ue are that of the enclosed expression. The fact that an
expression evaluates to an Ivalue is not altered by encl osing such
an expression in parentheses.

CONVERSI ONS

The conversion of a value fromone data type to another may be done
explicitly, by wusing a cast for exanple, or may be inplicitly
carried out when sone operation is perfornmed, as when an integer is
assigned to a float.

| MPLI CI T CONVERSI ONS

Many conversions are carried out automatically by the Conpiler,
particularly in the case of arithmetic expressions. The genera
pattern for deciding what will be converted to what in an arithmetic
operation involving two operands is as follows:

If either operand is of type float the other will be converted to
float and that will be the resultant type;

Gherwise if either operand is of type long int the other will be
converted to long int and that will be the resultant type;
Oherwise if either operand is of type unsigned int the other

will be converted to unsigned int and that will be the resultant
type;

O herwise if either operand is of type int the other operand wll
be converted to int and that wll be the resultant type;
Oherwise if either operand is of type short int the other
operand wll be converted to short int and that wll be the

resultant type
otherwi se both operands nust be of type char and that is the
resultant type

Notice that character expressions are not always automatically

converted to integer and, in general, when wused in arithnetic
expressions, a character expression is converted to the type of the
ot her operand. Thus, when two expressions of type character are
added, the result will be of type character. |If the result cannot

fit in a character size space an overflow condition w Il occur
Char acter expressions are, however, always converted to integer when
used as function paraneters.

The following conventions apply to the results of various
conversions. Note that Integral includes all types other than float.

Float to integral Type: The conversion from float to an integra
type is as follows. The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0), and this
is the resultant value if the truncated value is within the range
which can be represented by the specified integral type. [f the
truncated value is larger than that which can be represented by the

C.6.14

specified integral type, then the result is undefined.

Integral to Float Type: The conversion of an integral expression to
type float results in the value of the integral expression as
represented in floating point format. If the integral expression has
nmore bits representing its value than the floating point allows in
its mantissa, there will be sone | oss of precision when |arge
nunbers are converted. Presently this happens only when converting
long integers to float.

Integral to Integral Type: if t he bit length of the source
expression type is longer than the bit |l ength of the resultant type,
then the only conversion done is to discard the excess high order
bits. Wien the bit length of the destination type is |longer than the
bit Iength of the source expression type, excess high order bits
will be filled with either the sign bit of the source expression or
zeros. |If the source expression is of unsigned type then high order
bits are zero filled; otherwise they are sign filled. If both source
expression type and destination type are the same |ength then no
actual change in the bit pattern takes place.

EXPLI CI T CONVERSI ONS

Sometinmes it is desired to force a conversion explicitly. This is
called casting an expression fromone type to another, and the
mechani sm by which this is doneis called a cast. A cast is
indicated by an expression preceded by a set of parentheses which
enclose a type specifier followed by an abstract declarator (as
described in the paragraph on abstract data decl arati ons under DATA
CONVENTI ONS) .

LVALUES

There is a distinction made between expressions which evaluate to
constant values and those which evaluate to variable val ues. An
expression which evaluates to a variable value is called an |val ue.
Lval ues may be changed, whereas constant values may not. It makes no
sense, for exanple, to place a constant value (a non-lvalue) to the
left of an assignnent operator because no new val ue may be assi gned
to it. Any attenpt to do this will be flagged as an error by the
Conpi | er. In fact, the "I" in the term "lvalue" is intended as a
rem nder that this value may be placed to the [eft of an assignnent
operator.

CONSTANT EXPRESSI ONS

In certain cases Introl-C may require the use of a constant
expr essi on. The set of constant expressions is a subset of the set
of regular expressions. Constant expressions are expressions which
can be evaluated to a scalar at conpile tinme and thus may contain no
variables or floating point values. Likew se a constant expression
may contain no operators which change the value of any of their
operands or have variable results. The |egal constant operators are
the unary operators:

I ~ - sizeof
the binary operators:
* %+ - << >> < <= > >= == 1= & "~ | && ||

C.6.15

and the trinary operator:
?:

In the case of a constant expression used as an initializer, the
expression nmay alternatively consist of a floating point constant
(possibly preceded by a negative sign), or an expression which
eval uates to a constant pointer

A constant pointer is one whose value is known at conpile tine. This
i ncludes function nanes, static and external array nanes, static and
external variables which are preceded by the addressing operator
"&', or any of the above offset by a constant expression. The
addresses of automatic variables are not pernmitted in such an
expression because their location is dynam c (not known at conpile
time).

OPERATORS

The following is a list of operators in the order of their priority.
Also listed is the order of evaluation of operators when two or nore
operators of the same priority appear in an expression

OPERATOR EVALUATED
O 11 -> . left to right
! ~ ++ -- - (<type>) * & sizeof right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== I= left to right
& left to right
A left to right
| left to right
&& left to right
[] left to right
?2: right to left
= 4= -= *z= [= U >>= <<= &= M= = right to left

left to right

The operators are described below in the order of their priorities.

ADDRESSI NG OPERATORS
Addr essi ng operators evaluate left to right.

Function Operator () The function operator is indicated by a pair of
parent heses preceded by an expression which evaluates to type
"function". There may optionally be a Iist of expressions separated
by commas within the parentheses. The effect is to execute the
function naned. The result of the function operator is an expression
whi ch has a value of whatever type has been defined as the return
type of the function. The expressions within the parentheses may be
of any type and any nunber; no checking is done to verify that the
types and nunber of the expressions within the parentheses in the

C.6.16

function call agree with the types and nunber specified in the
function decl arati on. Functi ons may be called recursively.

Array operator [] The array operator is indicated by an expression
followed by a pair of brackets which contain an expression. One of
the expressions nmust evaluate to type pointer while the other mnust
evaluate to an integral type. It is usually considered a good
programm ng practice to make the first expression (the one outside
the brackets) the one which evaluates to type pointer. This is not
of necessity, however, due to the fact that el[e2] is defined to be
identical to *((el)+(e2)). Notice that addition is a commutative
operator and, thus, so is the array operator. The result of an array
operation is an expression which is of the type pointed to by the
poi nter expression. The array operator returns the value of the
object that is pointed to when the integral value is multiplied by
the size of the type pointed to and then added to value of the
poi nter. The effect is to return the value of the object which is
di spl aced the integral nunber fromthe beginning of an array pointed
to by the pointer

Structure Menber Operator. The structure menber operator is
indicated by an expression which evaluates to type structure,
followed by a period, ".", followed by an identifier; as in "a.b".

In Introl-C the expression nust evaluate to a structure type which
has the identifier as a legal nenber; otherw se, the Conpiler wll
generate an error nmessage. The result is an expression whose type
and value is that of the indicated nenber in the structure.

Structure Menber Pointer Operator -> The structure menber pointer
operator is indicated by an expression which evaluates to type
pointer to structure followed by a dash-greater-than character
combi nation, "->", followed by an identifier; as in "a->b" (there
may be no white space between the dash and the greater than sign).
In Introl-Cthe type of the structure pointed to by the expression
must have the identifier as a I|egal nenber. The result is an
expressi on whose type and value is that of the indicated nenber in
the structure pointed to.

UNARY OPERATORS
Unary operators evaluate right to left.

Logical Not Operator ! The logical Not operator is indicated by an
exclamation mark, "!", followed by an expression. The result is an
expressi on whose type is character and whose value is O (zero) if
the original expression was non-zero and 1 (one) otherw se.

Bitwise Not Operator ~ The bitwise not operator is indicated by a
tilde, "~", followed by an expression. The result is an expression
with a value equal to the one's conplenent of the original
expression and with the same type as the original expression. The
bi twi se Not operator nmay not be applied to types pointer and float.

Increment Qperator ++ The increment operator has two forms. It is
indicated by a double plus (two successive plus signs wth no

C. 6.17

intervening white space, "++" either imrediately preceding or
followi ng an expression. The expression nust evaluate to an |val ue
(that is, a variable, sonmething which can be witten to). Wen the
double plus precedes a variable, the variable is increnmented by one
and the resultant expression is the new value of the variable. Wen
the double plus follows a variable, the variable is also incremented
but the resultant expression is the value the variable had before it
was i ncrenent ed. When the increment operator is applied to a
pointer, the pointer is incremented by the length of the object to
which it points; thus it will point to the next object in sequence

Decrenent (Qperator -- The decrenment operator (like the increnent
operator) has two forns. It is indicated by a double mnus (two
successive mnus signs with no intervening white space, "--") either
i mediately preceding or follow ng an expression. The expression
must evaluate to an lvalue (that is, a variable, something which can
be witten to). When the double mnus precedes the variable the
variable is decrenented by one and the resultant expression is the
new value of the variable. VWen the double minus follows the
variable, the variable is also decrenented but the resultant
expression is the value the variable had before it was decrenented.
VWhen the decrenment operator is applied to a pointer the pointer is
decremented by the Iength of the object to which it points; thus it
will point to the previous object in sequence.

Unary Mnus Operator - The unary minus operator is indicated by a
m nus sign, "-", followed by an expression. The resultant expression
is the al gebraic negation of the original expression. The action of
the unary mnus is undefined when used on types unsigned integer and

character (which is al so unsigned).

Cast Operator (type) The cast operator is indicated by a data type
nane in parentheses, followed by an expression. A data type nane is
like a data type declaration but without the object to which it
would normally refer. For exanple, to cast sone expression to type
"function returning pointer to character", one would type "(char
*())EI" (where El is an expression). The expression may be of any
type. The resultant expression has the type specified by the cast.

Indirection QOperator * The indirection operator is indicated by a
star, "*", followed by an expression which nust be of type pointer
The resultant expression has the type and value of the object to
whi ch the pointer points.

Addr ess perator & The address operator is indicated by an
anpersand, "&", followed by an Ivalue. The resultant expression is a
pointer to the object indicated by the Ival ue.

Size of QOperator sizeof The size of operator is indicated by the
keyword, "sizeof", followed by either a type nane enclosed in
parent heses, or an expression. The result is an expression of type
i nteger whose value is the size, in bytes, of an object of the type
i ndi cat ed.

C.6.18

MULTI PLI CATI VE OPERATORS
Multiplicative operators evaluate left to right.

Multiplication Operator * The nultiplication operator is indicated
by an expression, followed by a star, "*", followed by an
expr essi on. The result is an expression whose value is that of the
al gebraic multiplication of the two expressions.

Division operator / The division operator is indicated by an
expression, followed by a slash, "/", followed by an expression. The
result is an expression whose value is that of the algebraic
division of the first expression by the second. If both of the
expressions are of integral type then the result will also be of
integral type and any fractional result will be discarded

Modul o Operator % The nodul o operator is indicated by an expression,

followed by a percent synbol, "%, followed by an expression. The
result is an expression whose value is the first expression nodul o
the second expression. That is, the first expression is integer

divided by the second expression wth the result equal to the
remai nder. Both expressions nmust be of integral type.

ADDI Tl VE OPERATORS
Additive operators evaluate left to right.

Addition Operator + The addition operator is indicated by an
expr essi on, followed by a plus synbol, "+", followed by an
expression. The result is an expression whose value is the al gebraic
sum of the expressions.

Subtraction Operator - The subtraction operator is indicated by an

expr essi on, fol | oned by a mnus sign, "-", followed by an
expression. The result is an expression whose value is the al gebraic
result of the second expression subtracted from the first

expr essi on.

SHI FT OPERATORS
Shift operators evaluate left to right.

Left Shift Operator << The left shift operator is indicated by an
expression, followed by a double | ess-than synbol, "<<", followed by
an expression. The result is an expression whose value is that of
the first expression after having been bitwise left shifted by the
nunber of bits indicated by the second expression. Zeros are shifted
into the loworder bit positions. Both expressions nust be of
i ntegral type

Right Shift Operator >> The right shift operator is indicated by an
expression, followed by a double greater-than synbol, ">>", foll owed
by an expression. The result is an expression whose value is that of
the first expression after having been bitw se right shifted by the
nunber of bits indicated by the second expression. If the first
expression is of signed type, its sign bit will be shifted into the
high order bit positions; otherwi se zeros wll be shifted into the

C.6.19

hi gh order bit positions. Both expressions nmust be of integral type.

RELATI ONAL OPERATORS
Rel ati onal operators evaluate left to right.

Less-Than Operator < The less-than operator is indicated by an
expression, followed by a I|ess-than synbol, "<", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
| ess than the second expression, and a zero (fal se) val ue otherw se.

Less- Than Equal Operator <= The less-than equal operator is
i ndicated by an expression, followed by a | ess-than equal character
conmbi nation, "<=", followed by an expression. There may be no white
space between the | ess-than synbol and the equal synmbol. The result
i s an expression of type character which has a non-zero (true) val ue
if the first expression is algebraically less than or equal to the
second expression, and a zero (false) val ue ot herw se.

Greater-Than Operator > The greater-than operator is indicated by an
expression, followed by a greater than synbol, ">", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
greater than the second expression, and a zero (false) value
ot herw se.

Greater-Than Equal operator >= The greater-than equal operator is
indicated by an expression, followed by a greater-than equa
character conbination, ">=", followed by an expression. There may be
no white space between the greater-than synbol and the equal synbol.
The result is an expression of type character which has a non-zero
(true) wvalue if the first expression is algebraically greater than
or equal to the second expression, and a zero (false) value
ot herw se.

EQUALI TY OPERATORS
Equal ity operators evaluate left to right.

Equal To Operator == The -equal-to operator is indicated by an
expression, followed by a double equal sign, "==", followed by an
expression. There may be no white space between the two equal signs.
The result is an expression of type character which has a non-zero
(true) wvalue if the first expression is algebraically equal to the

second expression, and a zero (fal se) val ue ot herw se.

Not Equal Operator != The not-equal operator is indicated by an
expr essi on, foll owed by an exclamation mark equal character
conmbination, "!=", followed by an expression. There may be no white

space between the exclanmation mark and the equal sign. The result is
an expression of type character which has a non-zero (true) value if
t he first expression is algebraically wunequal to the second
expression and a zero (fal se) val ue otherw se.

C.6.20

Bl TW SE _AND
The bitw se And operator evaluates left to right.

Bitwise And Operator & The bitwi se And operator is indicated by an
expr essi on, fol | oned by an anpersand, "&', followed by an
expression. The result is an expression whose value is the bitw se
And of the two expressions. Both expressions nmust be of integra

type.

Bl TW SE EXCLUSI VE OR
The bitwi se exclusive O operator evaluates left to right.

Bitwi se Exclusive Or operator - The bitw se exclusive or operator is
i ndi cated by an expression, followed by a caret, "-", followed by an
expr essi on. The result is an expression whose value is the bitw se
exclusive O of the two expressions. Both expressions nust be of

i ntegral type

Bl TWSE OR

The bitwise O operator evaluates left to right.

Bitwise O Operator | The bitwise O operator is indicated by an
expression, followed by a vertical bar, "|", followed by an
expr essi on. The result is an expression whose value is the bitw se
O of the two expressions. Bot h expressions nmust be of integra
t ype.

LOG CAL AND

The | ogi cal And operator evaluates left to right.

Logi cal And operator & The | ogical And operator is indicated by an
expression, followed by a double anpersand, "&&"', followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if both expressions had non-zero val ues, and

a zero (false) value otherw se. Al'l Logical -And expressions are
evaluated in short circuit node. That is, the expressionis
eval uat ed left toright and, if the first expression has a zero

val ue, then the second expression is not eval uated.

LOG CAL OR

The | ogical O operator evaluates left to right.

Logical O Operator || The logical or operator is indicated by an
expression, followed by double vertical bars, "||", followed by an

expression. The result 1is an expression of type character which has
a non-zero (true) value if either of the expressions has a non-zero
value, and a =zero (false) value ot herw se. Al'l Logical-O
expressions are evaluated in short circuit node. That is, the
expression is evaluated left to right and, if the first expression
has a non-zero value, then the second expression is not eval uated.

C.6.21

CONDI TI ONAL EXPRESSI ON
The conditional expression evaluates right to left.

Conditional operator ?: The conditional expression operator, a
trinary operator, is indicated by an expression, followed by a
question mark, "?", followed by an expression, followed by a colon

":", followed by an expression. If the first expression evaluates to
a non-zero value, the second expression is eval uated; otherw se the
third expressionis evaluated. If the second and third expressions
are of different type, the wusual arithnetic conversion conventions
are applied to make the types identical. The resultant expression
has the sane type and val ue as the eval uated expression

ASSI GNVENT OPERATORS
Assi gnment operators evaluate right to left.

Assignnment Cperator = The assignhment operator is indicated by an
| val ue, followed by an equal sign, "=", followed by an expression

The Ilvalue's old value wll be replaced by the wvalue of the
expr essi on. The result is an expression wth a type and val ue the

sane as that of the |val ue.

Updat e Assi gnnent Operator <binary operator >= The update assi gnment

operator is indicated by an |val ue, followed by a binary
operator-equal sign character conbination (for exanple += -= *=
/= Y%, >>= <<=, &=, "=, or |=), followed by an expression. There

may be no white space between the binary operator and the equa
sign. The effect of

<l val ue> op= <expressi on>
is identical to

<l val ue> = <l val ue> op <expressi on>
except that the |Ivalue is evaluated only once. The result is an
expression with the same value and type as that of the |value.

COVIVA
The conma operator evaluates left to right.

Comma (Operator , The conma operator is indicated by an expression
followed by a comm, ",", followed by an expression. Each expression
is evaluated fromleft to right. The resultant expression has the

type and val ue of the second expression

STATEMENTS

Statenments include the set of all expressions along with various
constructs which control program flow. Statements are executed
sequentially wunless the programflow has been altered by one of the
program fl ow control statenents

EXPRESSI ON STATEMENT

Any expression may be used as a statenent if it is termnated by a
sem col on. The resultant value of the expression has no effect.
Presumably the expression wll have sone side effect, such as
altering a nenory location as is done in an assi gnnment expression

C. 6.22

An expression statenment which has no side effects is flagged as an
error by the Conpiler.

COVPOUND STATEMENT
A conmpound statenent, also called a block, consists of a left brace,
"(", followed by zero or nore data decl arations, followed by zero or

nore statements, followed by a right brace, ")". A bl ock has the
effect of "bracketing"” a group of statements so that they becone,
for syntactical purposes, a single statenent. Thus t he conpound

statement may be used anywhere any other statenent nmay be used. Al
data declared inside the block is local to the block unless
specified as being external.

CONDI T1 ONAL STATEMENT

The conditional statenent has two fornms. One formis the foll ow ng:
the keyword "if", followed by a set of parentheses containing an
expression, followed by a statenment. The expression is eval uated
and, if its resultant value is non-zero, then the statenment wll be
executed; otherwise it will not be executed. The other formof the
condi tional statenent consists of the keyword "if", followed by a
set of parentheses containing an expression, followed by a
statenment, followed by the keyword "else", followed by a statenent.
The expression is evaluated and, if its resultant value is non-zero,
then the first statenment is executed; otherw se the second statenent
i s executed.

VWHI LE STATEMENT
The while statement is indicated by the keyword "while", followed by
a set of parentheses containing an expression, followed by a

st at enment . The expression will be evaluated repeatedly until it
evaluates to a zero value with the statenment being executed after
each non-zero evaluation of the expression. I[f the expression

evaluates to zero initially, then the statement will not be executed
at all.

DO STATEMENT

The do statement is indicated by the keyword "do", followed by a
staterment, followed by the keyword "while", followed by a set of
par ent heses containing an expression. The statenent is executed
repeatedly, with the expression being evaluated after each execution
of the statenent, wuntil the expression evaluates to zero. The

statenment is always executed at |east once.

FOR STATEMENT

The for statenent is indicated by the keyword "for", followed by an
open paren, "(", followed by an optional expression, followed by a
sem colon, ";", followed by an optional expression, followed by a
sem colon, ";", followed by an optional expression, followed by a
cl ose paren, ")", followed by a statenment. The first expression wll
be evaluated exactly once. The second expression will be eval uated
repeatedly wuntil it evaluates to a zero value, with the statenent
bei ng executed and the third expression being evaluated after each
non-zero eval uation of the second expression. Notice that all three

of the expressions are optional. If the second expression is onmtted

C.6.23

it will be assunmed to be an expression which always evaluates to a
1, thus making the for |oop execute forever. The effect of omtting
the first or the third expression is sinply that there wll be
nothing to evaluate in their respective positions.

SW TCH STATEMENT

The switch statenment is indicated by the keyword "switch", followed
by an expression enclosed in parentheses, followed by a statenent.
The expression is evaluated and cast to type integer. The resultant
value is then matched against any case |labels in the statenent
portion of the swtch. If a match is found, execution wll be
resuned at the location where the case |abel was defined. If no
match is found, but there is a default prefix in the statenent
portion of the switch statenent, then execution will continue at the
location following the default prefix; otherwise no part of the
statenment portion of the switch will be executed.

CASE LABEL STATEMENT
The case |label may only appear in the statement portion of a switch

statenent. It is indicated by the keyword "case", followed by a
constant expression, followed by a colon ":", followed by a
st at ement . Its effect is to mark the statenment as a possible entry

point in a switch statenent.

DEFAULT STATEMENT

The default statenment may only appear in the statement portion of a
switch statement. It is indicated by the keyword "default", followed
by a colon, ":", followed by a statenent. |Its effect is to mark the
statement as the default entry point in a swtch statement. This
entry is taken when none of the case |abels matches the expression
in the switch statement. The default statenment nmay appear no nore
than once in any given switch statenent.

BREAK STATEMENT

The break statement is indicated by the keyword "break", followed by
a semcolon, ";". The break statement causes term nation of the
smal | est enclosing while, do, for, or switch statenent. Contro
passes to the statenent following the termnated statenent.

CONTI NUE STATEMENT

The continue statement is indicated by the keyword "continue",
followed by a semicolon, ";". The continue statenent is permtted
only in while, do, and for statements. |In each of these statenents
the continue statenent causes inmedi ate conpletion of the statenent
portion of the above nentioned |ooping statenents. The effect is
that the current iteration of the |ooping statenent term nates and
execution continues at the point in the |ooping statement which is
normal |y executed when the | oop conpletes an iteration.

RETURN STATEMENT

The return statenment is indicated by the keyword "return”,
optionally followed by an expression, followed by a semcolon, ";"
The return statement causes a function to return control toits

caller. If the optional expression is included, it will be eval uated

C.6.24

and its value will be the return value of the function; otherw se
the function's return value is undefined. The return statenent is
optional; thereis an inplicit "return" statenent at the end of
every function body.

GOTO STATEMENT

The goto statement is indicated by the keyword "goto", followed by
an identifier followed by a semcolon, ";", where the identifier is
a |abel appearing on a |abel statenment which exists in the sane
function as the goto statenent. The goto statement causes control to
be transferred to the statenent marked by the |abel identifier. The
target |label nust appear in the sane function as the goto.

LABEL STATEMENT
The |abel statenent is indicated by an identifier, followed by a

col on, :", followed by a statenent. |Its effect is to mark a
statenment as a possible destination for a goto statenent.

NULL STATEMENT

The null statenent is indicated by a |one semcolon, ";". It has no
ef fect except to take up the place of a statenent. It may be pl aced
anywhere a statenment is permtted.

C.6.25

C. 6. 26

APPENDI CES

This section contains mscellaneous reference information which my
be useful to the progranmmer.

Appendix A Introl-C / Standard C CA1l
Appendix B Data Type Conversions C.B1
Appendi x C 6809- Specific Aspects of the Conpiler C.Ci1

APPENDI X A
| NTROL-C / STANDARD C
The follow ng differences exist between Introl -C and "standard C' as
it is defined in the Kernighan and Ritchie book, "The C Progranmm ng
Language".
OWM SSI ONS

1) The current release of |Introl-C does not support fields.

2) The current release of introl-C does not support the double data
t ype.

3) The current release of Introl-C does not support the #line and
#if preprocessor directives (all other directives, including #ifdef
and #i fndef, are supported, however).

EXTENSI ONS

4) Nesting of comments is permitted in Introl-C Thus |arge sections
of code nmay be "commented out"” by sinply bracketing the code segnent
with /* and */.

5) Introl-C provides separate name spaces for all structure and
uni on nmenber nanes, allow ng the use of identical nanes in different
struct and uni on decl arati ons.

6) Introl-C does not permt the use of t he obsolete
assi gnment -update operator in which the operator follows the equa
sign. Thus x=-1 is not identical to x-=l in Introl-Cas it may be in

sonme ot her inplenentations of C

7) Introl-C permts synbols to up to 90 characters in length

CA1l

CA2

APPENDI X B
DATA TYPE CONVERSI ONS
The follow ng describes the result of all conversions, inplicit or
ot herw se.
char to float: The conversion of a character to type float results

in the value of the character being represented in floating point
format. Characters are unsigned quantities.

char to int: Characters are converted to integers by padding zeros
on the left. |In present versions of introl-C <characters are
unsi gned.

char to long int: Characters are converted to long integers by
paddi ng zeros on the left.

char to short int: Characters are converted to short by padding
zeros on the left.

char to wunsigned int: Characters are converted to unsigned by
paddi ng zeros on the left.

char to pointer: Characters are converted to pointer by padding
zeros on the left.

float to char: The fractional part of the float 1is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be

represented by a character. |If the value is |larger than that which
can be represented by a character, then the result is the nmaxinmm
value possible for a character. |If the value is smaller than that

which can be represented by a character, the result is set to the
m ni num val ue possible for a character.

float to int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be

represented by a signed integer. |If the value is larger than that
which can be represented by an integer, then the result is the
maxi mum val ue possible for an integer. |If the value is smaller than

that which can be represented by an integer, the result is set to
t he m ni mum val ue possible for an integer

float to long int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be

represented by a long integer. |If the value is Ilarger than that
whi ch can be represented by a long integer, then the result is the
maxi mum val ue possible for a long integer. |If the value is smaller

than that which can be represented by a long integer, the result is
set to the m ni mum val ue possible for a long integer.

C.B1

float to short int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a short integer. If the value is larger than that
whi ch can be represented by a short integer, then the result is the
maxi mum val ue possible for a short integer. If the value is smaller
than that which can be represented by a short integer, the result is
set to the m ni mum val ue possible for a short integer

float to unsigned int: The fractional part of the float is truncated
to produce an integral value (truncation is always toward 0). This
is the resultant value if the value is within the range which can be
represented by an unsigned integer. If the value is larger than that
whi ch can be represented by an unsigned integer, then the result is
the maxi mum val ue possible for an unsigned integer. If the value is
smaller than that which can be represented by an unsigned integer
the result is set to the mninum value possible for an unsigned
i nteger.

float to pointer: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a pointer. If the value is larger than that which can
be represented by a pointer, then the result is the maxi numval ue
possible for a pointer. If the value is smaller than that which can
be represented by a pointer, the result is set to the m ni num val ue
possi ble for a pointer.

int to char: Integers are converted to characters by truncating the
excess high order bits.

int to float: The conversion of an integer to type float results in
the wvalue of the integer represented in a floating poi nt format.

int tolong int: Integers are converted to long integers by sign
ext ensi on.

int to short int: Integers are converted to short integers by
truncating any excess high order bits.

int to unsigned int: The conversion frominteger to unsigned integer
is conceptual and no actual change in the bit pattern takes place.
Thus the value of a positive integer converted to unsigned integer
does not change while the value of a negative integer appears as a
| ar ge unsi gned i nt eger.

int to pointer: The conversion frominteger to pointer is conceptua
and no actual change in the bit pattern takes pl ace.

long int to char: Long integers are converted to type character by
truncating the excess high order bits.

long int to float: The conversion of a long integer to type float
results in the wvalue of the long integer represented in floating

C.B2

point format. There may be sone | oss of precision for |arge val ues
because the nunmber of bits used to represent the long (31 not
including sign) is larger than the nunmber of bits used to represent
the manti ssa of the float (24).

long int to int: Long integers are converted to type integer by
truncating any excess high order bits.

long int to short int: Long integers are converted to short integers
by truncating the excess high order bits.

long int to unsigned int: Long integers are converted to unsigned
i ntegers by truncating the excess high order bits.

long int to pointer: Long integers are converted to pointer by
truncating the excess high order bits.

short int to char: Short integers are converted to character by
truncating any excess high order bits.

short int to float: The conversion of a short integer to type fl oat
results in the value of the short represented in floating point
format.

short int to int: Wen short integers are converted to type integer
any excess high order bit positions in the result are filled by sign
extendi ng the short integer

short int to long int: When short integers are converted to type
long integer, any excess high order bit positions in the result are
filled by sign extendi ng the short integer.

short int to unsigned int: Wen short integers are converted to type
unsi gned integer, any excess high order bit positions in the result
are filled by sign extending the short integer.

short int to pointer: \Wen short integers are converted to pointer
any excess high order bit positions in the result are filled by sign
extendi ng the short integer

unsigned int to char: Unsigned integers are converted to type
character by truncating the excess high order bits.

unsigned int to float: The conversion of an unsigned integer to type
float results in the value of the unsigned integer represented in
floating point format.

unsigned int to int: The conversion fromunsigned integer to integer
is conceptual and no actual change in the bit pattern takes place.
Thus, when an unsigned integer with a value greater than the maxi mum
integer value is converted to an integer, the result appears as a
negati ve nunber.

C.B3

unsigned int to long int: Unsigned integers are converted to | ong by
paddi ng zeros on the left.

unsigned int to short int: Unsigned integers are converted to type
short integers by truncating any excess high order bits.

unsigned int to pointer: The conversion fromunsigned to pointer is
conceptual and no actual change in the bit pattern takes place.

pointer to char: Pointers are converted to type character by
truncating the high order bits.

pointer to float: The conversion of a pointer to type float results
in the value of the pointer as represented in floating point format.
The value of a pointer is interpreted as an unsigned quantity.

pointer to int: The conversion frompointer to integer is conceptua
and no actual change in the bit pattern takes place.

pointer to long int: Pointers are converted to type long integer by
paddi ng the high order bits with zeros.

pointer to short int: Pointers are converted to short integer by
truncating any excess high order bits.

pointer to unsigned int: The conversion from pointer to unsigned
i nteger is conceptual and no actual change in the bit pattern takes
pl ace.

C.B. 4

APPENDI X C

I NTROL- C/ 6809 COWPI LER
DATA, REG STER USAGE
AND PARAMETER PASSI NG CONVENTI ONS

DATA

The value of char data is represented in an eight bit (one byte)
menory | ocation. A char is an unsigned snmall integer that can
contain a value fromzero to 255

Int wvariables are contained in two bytes (16 bits) and represent a
two's conplenent value that nmay be in the range -32768 to +32767

Al'l signed integers are represented in two's conpl enent form
Short is a synonymfor int in this inplenentation.

Unsigned (or unsigned int) variables are contained in two bytes (16
bits) and may contain values in the range 0 to 65535.

Long (or long int) variables are contained in four bytes (32 bits)
and contain values in the range -2147483648 to 2147483647.

Floats are contained in four bytes (32 bits) and contain val ues as
defined by the I EEE standard for 32 bit floating point nunbers. (See
also the discussion on floats in the "Definition of Introl-C
section of this manual.)

A structure has a size exactly equal to the sumof the sizes of its
parts. There are no unused spaces in structures. For exanple the
structure declaration:

struct
{
int a;
char b;
unsi gned d;
char e[2];
long f;
float g;
J

will create the followi ng nenory all ocation (assunme the byte nunbers
represent offsets fromthe beginning of structure f)

Byt e Contents
0,1 int value of member a. (Byte O
is the high byte.)

2 Char val ue of menber b.

3,4 Unsi gned val ue of nenber d.
5 e[0]

6 e[1]

7,8, 9, 10 Long int val ue of menber f.
(Byte 7 is the high byte.)

11,12,13,14 The first, mnmost significant bit of
the first byte is the sign of the
float. The next seven bits of the
first byte and the first bit of the
next byte conprise the bi ased
exponent. The remaining 23 bits
conprise the mantissa and nake up
the remai nder of the second byte as
well as the next two bytes.

A wunion is the size of its largest nenber. Al unions pack towards
the left. This neans that a char variable coexisting with an int in
a union will actually be allocated the byte representing the high
byte of the integer's val ue.

An array has the size of one of its elements multiplied by the given
di mrension of the array. An array declaration such as:

char a[10];

defi nes a" to be a character array with ten el ements and therefore
ten bytes | ong.

REG STER USAGE

The 6809 has two eight bit accunmulators (usable as a single sixteen
bit register), three general purpose index registers, a hardware
stack pointer and a programinstruction counter. These registers are
al l ocated by the Conpiler as foll ows.

The B accunulator is used as the char accurmulator for arithnetic
expressions that involve char values. The Dregister (A:B) is used
as the int and unsigned accunul ator. A programrer is free to destroy
these registers in a user witten assenbly | anguage function. The B
register is used to return character data froma function; the D
register is used to return int, or wunsigned values; and both the U
and D registers are wused to return long int. or float, wth U
contai ning the nost significant half of the nunber.

The X, Y, and U registers are used in addressing operands. The
contents of the X and U register may be destroyed by an assenbly
| anguage routine without adverse effect. The Y register may al so be

nodi fi ed, but only if the wuser is not generating position
i ndependent code. When generating position independent code, the
Conpiler assunes the Y register wll in all cases contain the
address of the beginning of its external and static data area. In

such case, a program initialization routine must initialize the Y
register before the first call to "main()".

The hardware stack pointer (SP) should be preserved through a

function. The SP points to an area of read/wite nmenory that has
several uses: (1) The stack area is used to preserve a record of the

CC2

execution history of the program so that a function always "knows"
who <called and can return to the sane place; (2) the stack is used
to save the state of the processor in the event of an interrupt; (3)
the stack is wused to pass paranmeters to a function: and (4) the
stack is used to allocate |ocal variable space for a function. These
first two functions of the stack are determ ned by the 6809 hardware
and can be pursued further, if desired, by obtaining a reference
book on the m croprocessor. The third and fourth functions of the
st ack (paraneter passing and | ocal wvariable allocation) are
described in the foll owi ng paragraphs.

PARAMETER PASSI NG CONVENTI ONS

VWhen a function is called in this inplenmentation the second through
the last paraneters are pushed on the stack in reverse order (I ast
par anet er first). The first parameter is loaded into the D
accunul at or. If the first paraneter is a long or float, the high
order word is |loaded into the U register. Char values are converted
to int when passed as a paranmeter. Either the junp to subroutine
(JSR) or the long branch to subroutine (LBSR) instruction is then
used to call the desired function. After the function returns, the
area in the stack used for paraneters is freed. The return val ue of
the function is assunmed to be in the U and D registers, where Uis
assuned to hold the nost significant 16 bits of a returned |ong or
float value while the D register holds the least significant 16
bits. Integer-sized data is returned in the D register. Character
data is returned in the loworder 8 bits of the Dregister (the B
register). \When returning character type data, it is a good idea to
clear the wupper 8 bits of the D register (the A register).

A function call such as:
f(a, b, 1+2)
woul d generate the 6809 code with the foll ow ng nmeani ng:

push (the val ue of 1+2)

push (the value of variable b)

| oad (the value of variable a)

LBSR f

deal | ocate 4 bytes fromthe SP (total pushed
par anmet er size)

Wen the functionis entered, the stack frame |ooks |ike this:
St ack Contents O f set
ot her data on the stack SP+6
the val ue of 1+2 SP+4
the value of variable b SP+2
SP -> return address SP+0
D = value of variable a

LOCAL DATA

If a function needs auto storage |ocations it allocates them bel ow
the return address of the stack frame descri bed above. Suppose the
function f() has the foll ow ng declarati on:

f(x,y, 2z)
int x,y,z;
{
char a;
int b;

The function would expect its paraneters to be in the stack frane as
descri bed above. The function will often save parameter 1 (passed in
the Dregister) in the stack just under the return address. After
entering the function, the stack pointer would be nodified to all ow
the storage of a and b below the return address of the stack frane.
The new stack frame would | ook Iike this:

St ack Contents of f set
other data on the stack SP+11 ..
t he val ue of paraneter z SP+9
t he val ue of paraneter y SP+7
return address SP+5
t he val ue of paraneter x SP+3
variable b SP+|
SP -> variable a SP+0

Note that char variables use only one byte as auto variables. The
only time they are automatically given two bytes is when passed as
par anet ers. The function has the responsibility of "cleaning up”
after itself by removing the allocation of variables a and b from
the stack. Allocating menory from the stack is acconplished by
subtracting the desired nunber of bytes fromthe SP and using the
area between the new SP and the old SP. Deallocating nmenmory fromthe
stack is the opposite: add the nunber of bytes to deallocate to the
SP.

There are two inportant things to remenber about the stack pointer
The first is that it nust always point to the return address of the
caller when the function is conplete. The second is that the stack
poi nter rnust always point to an area of nenory |arge enough to hold
all the auto variables of a series of functions at their deepest
nesting level, allowroomfor the paraneters and return addresses,
| eave space for any tenporary variables that m ght be used on the
stack, and allow room for saving the system state if the prograns
are to be run in an interrupt environment. In other words, the stack
is very busy so make the stack area big enough!

| NDEX

abstract declarators 6.13

addi tion operator 6.19

addi tive operators 6.19

address operator 6.18

addressing operators 6.16

and operator, bitwise 6.21

and operator, logical 6.21

array operator 6.17

array type 6.8

array, multi-dinmensional 6.8
assenbly | anguage text file 3.2
assi gnment operator 6.23

assi gnment operator, update 6.23
assi gnment operators 6.23

auto variables 6.6

backspace 6.2

bi nary operators 6.15

bitw se and operator 6.21

bitw se exclusive or operator 6.21
bitwi se Not operator 6.17

bitwi se or operator 6.21

bl anks 6.1

break statement 6.25

carr-iage return 6.2

case | abel statenment 6.25

cast 6.13

cast operator 6.18

Character constants 6.2

character type 6.7

conma operator 6.23

comrent nesting 6.1

comrents 6.1

conpiler 4.1

conpiler error nessages 4.7
conpiler options 4.2

compound statenment 6.24
condi ti onal expression 6.22
condi ti onal operator 6.23

constant expressions 6.15
constant, floating point 6.3
constants 6.2

constants, character 6.2
constants, hexadecinmal 6.2
constants, integer 6.2

constants, long integer 6.2
continue statement 6.25
conversion, float to integral 6.14
conversion, integral to float 6.15
conversion, integral to integral 6.15
conversions 6.14

conversions, explicit 6.15
conversions, inplicit 6.14

data conventions 6.6

data declarations 6.10
declarations 6.10

decl arations, data 6.10

decl arators, abstract 6.13
decrenment operator 6.18

default statement 6.25

#define directive 6.3

definition of Introl-C 6.1
definition, function 6.12
directive, #define 6.3

directive, #else 6.4

directive, #endif
directive, #ifdef
directive, #ifndef 6.5
directive, #include 6.5
division operator 6.19
do statenment 6.24

#el se directive 6.4

6.4
6.4

#endif directive 6.4

equ 5.9

equal -to operator 6.20
equality operators 6.20

err 5.10

error nmessages, conpiler 4.7
escape characters 6.2
exclusive or operator, bitwise 6.21
explicit conversions 6.15
export 5.10

expressi on statement 6.23
expression, conditional 6.22
expressions 6.13

expressi ons, constant 6.15
extern variables 6.5

fcb 5.10
fcc 5.11
fdb 5.11

file, assenbly | anguage text 3.2
file, relocatable object 3.2
float to integral conversion 6.14
floating point constant 6.3
floating point type 6.8

for statement 6.24

formfeed 6.2

function definition 6.12
function operator 6.16

function type 6.8

functions 6.8

goto statement 6.26

greater-than operator 6.20
greater-than-equal operator 6.20
hexadeci nal constants 6.2
identifier length 6.1
identifiers 6.1

#ifdef directive 6.4

#i fndef directive 6.5

implicit conversions 6.14

import 5.12

#include directive 6.5

increment operator 6.17
indirection operator 6.18

+inf 6.8

nitializers 6.11

nteger constants, long 6.2
nteger type 6.7

nteger type, long 6.7

nteger type, short 6.7

nt eger type, unsigned 6.7
ntegral to float conversion 6.15
ntegral to integral conversion 6.15
keywor ds 6.1

| abel Statenment 6.26

| abel statement, case 6.25

left shift operator 6.19

| ess-than operator 6.20

| ess-than-equal operator 6.20

| exi cal conventions 6.1

lib 5.12
list 5.12
loc 5.13

| ogi cal and operator 6.21
| ogi cal not operator 6.17
| ogi cal or operator 6.21
long integer constants 6.2
long integer type 6.7

I values 6.15

nmacro, preprocessor 6.4
menber nanme spaces 6.9
nmodul o operator 6.19

mul tidi mensional array 6.8

mul tiplication operator 6.19
multiplicative operators 6.19
NaN 6.8

newine 6.2

newines 6.1

nolist 5.13

not - equal operator 6.20

null statenment 6.26

object file, relocatable 3.2
octal constants 6.2

offset 5.13

opcodes 5.6

operator precedence 6.16
operator, addition 6.19
operator, address 6.18
operator, array 6.17
operator, assignment 6.23
operator, bitwise and 6.21
operator, bitw se exclusive or
operator, bitwi se Not 6.17
operator, bitwise or 6.21
operator, cast 6.18
operator, comma 6.23
operator, conditional 6.23
operator, decrenment 6.18
operator, division 6.19
operator, equal-to 6.20
operator, function 6.16
operator, greater-than 6.20

operator, greater-than-equal 6

operator, increment 6.17
operator, indirection 6.18
operator, left shift 6.19
operator, less-than 6.20
operator, |ess-than-equal 6.20
operator, logical and 6.21
opertor, logical not 6.17
opertor, logical or 6.21
opertor, nmodulo 6.19
opertor, multiplication 6.19
operator, not-equal 6.20
operator, right shift 6.19
operator, shift 6.19
operator, sizeof 6.18

operator, structure nmenber 6.17
operator, structure nenber pointer

operator, subtraction 6.19
operator, unary mnus 6.18
operator, update assignnment 6
operators 6.16

operators, additive 6.19
operators, addressing 6.16
operators, assignment 6.23
operators, binary 6.15
operators, equality 6.20
operators, multiplicative 6.19
operators, relational 6.20
operators, trinary 6.15
operators, unary 6.1 5. 6.17
options, conpiler 4.2

or operator, bitwise 6.21

or operator, logical 6.21
pointer type 6.9

pointers 6.9

preprocessor directives 6.3
preprocessor nmacro 6.4
preceoence. operator 6.16
register variables 6.5

6

20

23

21

rel ati onal operators 6.20
rel ocatabl e object file 3.2
return statement 6.25
right shift operator 6.19
rmb 5.14

scope, nmenber names 6.9
set 5.14

shift operator 6.19

shift operator, left 6.19
shift operator, right 6.19
short integer type 6.7
sizeof 6.13

si zeof operator 6.18
statement, break 6.25

stat ement, case | abel 6-.25
st at ement, conpound 6, 24
statement, continue 6.25
statement, default 6.25
statement. do 6.24
statement, expression 6.23
statement, for 6.24
statement, goto 6.26
statement, |abel 6.26
statement, null 6.26
statenment, return 6.25
statement, switch 6.25
statement, while 6.24
statenments 6.23

static variables 6.7
storage class 6.6

storage cl ass, typedef 6.7
strings 6.3

structure nmenber nanme spaces 6.9

structure nmenber operator 6.17

structure nmenber pointer operator 6.17

structure, type 6.9
subtraction operator 6.19
switch statenent 6.75

syn 5.14

tab 6.2

Theory O Qperation 3.1
trinary operators 6.15
type 6.7

type structure 6.9

type, array 6.8

type, character 6.7

type, floating point 6.8
type, function 6.8

type, integer 6.7

type, long integer 6.7
type, pointer 6.9

type, short integer 6.7
type, union 6.9

type, unsigned integer 6.7
typedef.storage class 6.7
unary mnus operator 6.18
unary operators 6.15, 6.17
tundef 6.6

underscore 6.1

union type 6.9

unsi gned integer type 6.7
updat e assi gnment operator 6.23
variabl es, auto 6.6
variables, extern 6.6
vari abl es, register 6.6
variables, static 6.7
while statenent 6.24
white space 6.

