

INTROL-C COMPILER

REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
responsibility for any inaccuracies.

The software described in this manual is proprietary and is
furnished under a license agreement from Introl Corp. The software
and supporting documentation may be used and/or copied only in
accordance with said license agreement.

INTROL-C is a registered trademark of Introl Corp.

Introl Corp.

647 W. Virginia St.
Milwaukee, WI 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.

All Rights Reserved

Table of Contents

Introl-C Compiler Reference Manual

Table of Contents C.0.1

Introduction C.1.1

Getting Started C.2.1

Theory of Operation C.3.1

Compiler C.4.1

Assembler C.5.1

Definition of Introl-C C.6.1

Appendices C.A.1

C.O.1

C.O.2

INTRODUCTION

Introl-C provides a set of programs that have been designed to
facilitate the development of high-efficiency software, in C, for
microprocessor-based systems. It allows the programmer to take
advantage of all the convenience, power, and structure of the C
programming language, while producing executable programs whose
compact size and fast speed of execution rivals that of programs
written in assembly language.

The Introl-C software package includes a C Compiler, Relocating
Assembler, Linker, Loader, Library Manager, and Standard Library.

This Compiler Reference Manual describes the operation, use, and
features of the C Compiler and Relocating Assembler.

The operation and features of the Linker, Loader, and Library
Manager are described in the Linker Reference Manual.

The Standard Library Manual furnishes a detailed description of the
functions contained in the Standard Library.

Nowhere in any of these manuals do we profess to teach the C
programming language. It is assumed the user has access to the
definitive text, "The C Programming Language", Kernighan & Ritchie
(Prentice-Hall), or one of the several available C language
tutorials, for questions pertaining to the particulars of the C
language itself. The set of Introl-C Users Manuals are intended only
to describe Introl's implementation of the language.

C.1.1

C.1.2

GETTING STARTED

This section provides a brief overview Of the general procedures for
using Introl-C and is intended to help the user get off to a "fast
start" in running the Compiler and its related programs. For more
detailed operating information the reader is referred to subsequent
sections in this manual, as well as the other related user manuals
that may have been furnished with the Introl-C package. The
following comments assume that Introl-C has already been installed
on the user's system. (Refer to the Installation Instructions
accompanying the Introl-C distribution diskette for applicable
installation procedures.)

GENERAL

Introl-C is designed to enable the user to create an executable
output file from a C source file with a minimum of effort. Normally
it is only necessary for the user to enter a compilation/assembly
command line, and then enter a link/load command line.

In the simplest case, and assuming the C source program resides in a
single file called "sieve.c", for example, all that is necessary is
to enter the compiler command line:

icc sieve

and then enter the linker command line:

ilink sieve

The compiler command line entry will initiate execution of the
Compiler, which first compiles the file "sieve.c" to produce an
intermediate (and normally temporary) assembly language file, and
then automatically calls the Assembler, which assembles the
Compiler's assembly language output into a relocatable module named
"sieve.R" as the result. The linker command line, in turn, will call
the Linker, causing it to first link the relocatable file "sieve.R"
with any referenced functions from the Standard Library, and then
automatically execute the Loader, which loads the linked output into
an executable output file as the final result. The executable output
file will have the filename "sieve", possibly with a filename
extension appended, depending upon which specific Introl Loader is
being used (refer to Loader Appendices in the Linker Reference
Manual for details). When the Loader finishes, three
compilation-related files will typically exist: the original C
source file "sieve.c", the compiled and assembled relocatable module
"sieve.R", and the linked and loaded executable output file.

COMPILER COMMAND LINE

The compiler command line causes a C source file to be both compiled
and assembled to produce a relocatable module as the result.

The general form of the compiler command line is:

C.2.1

icc <filename> {<option>)

where <filename> is the name of the C source file which is to be
compiled and (<option>) represents zero or more option specifiers
for controlling the compilation and assembly processes. The input
filename is expected to have a filename extension; if none is
specified, the Compiler will assume the source file name has the
extension ".c". Unless the user explicitly assigns some other name
to the output file, the relocatable file produced after the
Assembler pass finishes will default to having the same name as the
C source input file, except with the filename extension ".R".

Compiler-related as well as Assembler-related options may be
specified on the compiler command line. Each of the available
options are described in detail in the Compiler Section of this
manual. Some of these option specifiers, and their general function,
are indicated below.

Compiler-specific option specifiers include:

-a[t|d|b|s]=<loc>
 Causes data of type "Text" or "Data" or "Bss" or "String",
 respectively, to be placed under the location counter indicated
 by the <loc> number.

-b=<directory>
 Identifies <directory> as being the place to find current and
 subsequent passes of the Compiler.

-C
 Overrides default condition with respect to generation of
 position independent code.

-d
 Overrides default condition with respect to generation of
 position independent data.

-g<C>
 Forces use of alternate "<c>" version pre-processor pass.

-i=<directory>
 Identifies <directory> as a place to search for #include files.

-k
 Causes console to display the name of each compilation pass as
 it is being executed.

-m<name>(=<string>)
 Defines <name> in preprocessor, with value <string> optionally
 assigned to <name>.

-r
 Retains the intermediate assembly language output file produced
 by the Compiler.

C.2.2

-S
 Causes "nested comments" to be disallowed.

-t=<directory>
 Places temporary files produced by this and subsequent passes
 of the Compiler in "directory" location.

-y[=<n>]
 Strips all identifiers to a maximum length of <n> characters.

-z
 Interprets "\n" (ie newline) characters as being carriage
 returns.

Assembler-specific options include:

-o=<filename>
 Assigns the name <filename> to Assembler's output object file.

-q=<class>
 Sets class specifier of Assembler's output module to the
 numeric value indicated by <class>.
-U
 Forces all undefined symbols to default to imported symbols.
-X
 Prevents an object file from being produced.

LINKER COMMAND LINE

Unless the user explicitly opts to inhibit loading, the linker
command line will cause an input module to be both linked and loaded
to produce an executable output file as the end result.

The general form of the linker command line is:

ilink <file> {<options>} <file> {<options>} ...

where each <file> entered represents the name of a file to be linked
and {<options>} represents zero or more option specifiers for
controlling the linking and loading processes. Each input file is
expected to have a filename extension; if none is specified, the
Linker will assume the input filename extension to be ".R".
Normally, the name of the executable output file will be the same as
the module which contains the "primary function name", but with a
filename extension determined by the particular Loader being used
(refer to the Linker Reference Manual for further discussion).

Each file that is input to the Linker is expected to be a
relocatable module. The Linker will NOT complain about producing an
output module which contains unresolved references; however,
attempts to subsequently load such a module will not be successful.

C.2.3

Both Linker and Loader options may normally be specified on the link
command line. These options are discussed in detail in the Linker
Reference Manual. Following are some of the link-time options that
are available:

-b
 Do not search Standard Library, "libc.R".

-c=<file>
 Find additional options and/or filenames in command, file named
 <file>.

-d[<c>]
 Use optional "<c>ld" Loader instead of the "standard" Loader.

-e=<symbol>
 Set entry point to <symbol>.

-f<string>
 Find additional library named "lib<string>.R" in the standard
 place for libraries.

-f=<string>
 Find additional library named "<string>.R" in the standard
 place for libraries.

-l[s][x][u][=<file>]
 Produce a linker listing with specified content.

-m=<symbol>
 Set the primary function name to be <symbol>.

-n
 Do not automatically call Loader.

-o=<file>
 Assign the name <file> to Linker's output file.

-P[<c>]
 Pipe Linker's output to Loader (if applicable for host
 operating system).

-s
 Strip output file of all non-entry defined symbols.

-t=<classlist>
 Link using <classlist> classes of module, if they are
 available.

-W
 make executable file no matter what! (ie even if unresolved
 references exist).

C.2.4

FILENAME CONVENTIONS

In general, the full legal filenames of any files which are input
to, or output, by, the Compiler, Assembler, Linker, and Loader are
always of the form:

<name><extension>

where <name> is the nominal "generic name" of the original source
file involved and <extension> is a filename extension, typically
consisting of a period (.) followed by one or more trailing
characters. When an input file is being specified on a command line,
however, it is normally sufficient to specify just the <name>
portion of the filename; the Introl-C program being called, whether
it be the Compiler, the Assembler, the Linker, or the Loader, will
automatically select the named file having an appropriate extension
(if such file exists) as described below.

Whereas the generic name associated with a given file serves to
generally identify that file as being derived from or related to
some C source program or function, the filename extension indicates
the specific nature of the contents of that particular file; ie
whether it is a file that contains the C source text itself, or a
file that contains the assembly language version of the source
program, or a file that contains a relocatable module version, or a
file that contains executable output, and so on.

Because of this convention of using a filename extension to identify
the specific nature of a file's contents, the Compiler, the
Assembler, the Linker, and the Loader are all designed to
automatically append a filename extension to the output files they
produce. In each case the "generic name" of the output file that
each of these component Introl-C programs produces usually remains
the same as that of the input file, but the extension appended to
the output is unique to the particular Introl-C compilation program
that generated the file. For example the Compiler normally appends
an extension of the form ".M<xx>" to the assembly language files it
produces, where the <xx> represents a 2-digit number as described
later in this section; the Assembler appends the extension ".R" to
the relocatable output files it produces; and the Linker appends the
extension ".RL" to the linked (but unloaded) relocatable output
files it produces. In the case of the Loader, the specific filename
extension (if any) appended to the output is determined by which of
the several Introl Loaders is being used to generate the executable
output file.

Similarly, the Compiler, the Assembler, the Linker, and the Loader
each expect their respective inputs to normally have a specific
filename extension (ie usually the extension that is appropriate to
the "type" of file format each of these programs expects to
process). In the case of the Compiler, input files are expected to
have the filename extension ".c", which is the extension normally
associated with files containing C source text. Input files to the
Assembler are normally expected to have an extension of the form

C.2.5

".M<XX>" (where <xx> represents a 2-digit number assigned by the
Compiler), which is the extension normally appended to assembly
language files that have been produced by the included compiler. The
Linker expects its inputs to have the extension ".R", which is the
extension the Assembler typically appends to the relocatable modules
it produces. The Loader expects its input files to have the
extension ".RL", which is the extension the Linker normally appends
to the relocatable and linked output files it produces.

Thus, unless some other filename extensions are explicity defined
for use on a command line, Introl-C will default to using input
files, and producing output files, having filename extensions as
follows:

 Introl-C Default Filename Extension
 Program Input Files Output File

 Compiler ".c" "M<xx>"

 Assembler ".M<xx>" ".R"

 Linker ".R" ".RL"

 Loader ".RL" (varies with
 Loader type)

*Note: The "xx>" designator in the ".M<xx>" extension represents a
2-digit number unique to the specific Introl-C compiler package that
is being used. For those Introl-C compiler packages that target the
6809 processor, the specific default extension is ".M09"; for
versions that target the 6801 and similar processors, the extension
is ".M01"; for versions that target the 6805, the extension is
".M05"; for versions that target the 68000, the extension is ".M68";
for versions that target the NS16000, the extension is "M16"; for
versions that target the 8086, the extension is ".M86".

Also, as indicated in the above table, the output filename extension
that is assigned to the executable output file will be dependent
upon which of the several available Introl Loaders is being used.
The reader is referred to the Loader Appendices of the Linker
Reference Manual for further information pertaining to Loader output
filenames.

ASSEMBLER COMMAND LINE

Normally the Assembler is invoked by the Compiler automatically as
part of any compilation/assembly process. However, the Assembler may
also be called independently by the user for assembling user-written
assembly language programs.

The general form of the assembler command line is:

r<xx> <filename> {<option>}

C.2.6

where "r<xx>" represents the Introl filename of the applicable
Assembler furnished with the Introl-C package, <filename> is the
name of the assembly language file which is to be assembled, and
{<option>) represents zero or more assembler option specifiers.

The "<xx>" in the "r<xx>" filename of the Assembler is a 2-digit
number unique to the specific Introl-C package being used. The
Introl-C package that targets the 6809 processor has the specific
Assembler filename "rO9"; the version that targets the 6801 and
similar processors has the Assembler filename "r0l"; the version
that targets the 6805 has the Assembler.filename "r05"; the version
that targets the 68000 has the Assembler filename "r68"; the version
that targets the NS16000 has the Assembler filename "rl6"; the
version that targets the 8086 has the Assembler filename "r86".

The assembly language input file is expected to have a filename
extension; if none is explicitly specified, the input filename
extension will default to the ".M<xx>" extension that the included
Compiler normally appends to its own output files. (ie ".M09",
".M05", etc, as applicable). The relocatable output file created by
the Assembler will nominally have the same name as the input file,
but with the filename extension ".R".

LOADER COMMAND LINE

Normally the Loader is called automatically by the Linker as a
result of a linker command line call. However, the Loader may also
be executed independently by the user via a loader command line of
the general form:

<c>ld <filename> {<option>}

where the <c> represents the first letter of the Introl filename of
the Loader which is to be called (several types of compatible
Loaders are optionally available and potentially usable with
Introl-C), <filename> is the filename of the relocatable file which
is to be loaded, and (option) represents zero or more option
specifiers. The relocatable input module is normally expected to
contain no unresolved references. The input file is expected to have
a filename extension; if none is explicitly specified, a ".RL"
filename extension is assumed. The user is referred to the Loader
Appendices of the Linker Reference Manual to determine the "<c>ld"
name(s) of the specific Loader(s) that may be legally accessed, the
applicable options available for each such Loader, and the unique
filename extension (if any) assigned to the executable output file
produced by each Loader type.

C.2.7

C.2.8

THEORY OF OPERATION

The creation of an executable file from a C source file can be
considered to occur in four distinct phases: a compilation phase,
followed by an assembly phase, followed by a linking phase, followed
by a loading phase. Under Introl-C, however, the assembly phase is
always initiated automatically when the compilation phase
terminates, and the loading phase is initiated automatically when
the linking phase terminates. Thus, it will normally appear to the
Introl-C user as though only two phases are actually involved: a
compilation/assembly phase (which is initiated via a single compiler
command line call), and a linking/loading phase (which is initiated
via a single linker command line call).

COMPILATION PHASE

The compilation phase, per se, is performed by the Compiler and
translates a C source text file into an assembly language text file
which is suitable for input to the Assembler.

The Compiler converts a C source file into assembly language by
seqentially executing four separate compilation programs, or
"passes", which are called passes "cO", "c1", "c2", and "c3",
respectively. (Note: The "cO" pass is alternatively called the "icc"
pass for some operating system versions of Introl-C.) Each of these
passes performs a unique function in the overall compilation process
and, as each pass finishes, it automatically initiates the next pass
in the sequence.

The basic function of the c0 pass, also known as the
"preprocessor", is to preprocess the C input text, removing
comments and other white space from the C-source text and executing
any preprocessor directives, ultimately transforming the original C
input into a series of tokens that can be more easily manipulated
and analyzed. If illegal characters appear in the C source text, or
preprocessor directives have been used improperly, the c0 pass will
detect these and flag them as errors. The cl pass, also called the
"parser", converts the output of the cO pass into two resultant
files: a triple file, which is a tree representaion of the original
program, and a symbol file. The cl pass also checks the program for
semantical and grammatical accuracy and is responsible for detecting
and reporting any errors of this type. The function of the c2 pass,
also called the "optimizer", is to optimize the triple file
generated by cl to reduce the size and increase the execution speed
of the final program. The c3 pass, called the "code generator", uses
the optimized triple file produced by c2, together with the symbol
table produced by cl, to produce an assembly language output file
for the target processor. The several Compiler passes transfer
information between one another via temporary files, which are
normally automatically deleted once their contents are no longer
needed by the Compiler.

The final result of the 4-pass compilation phase, therefore, is the
creation of an assembly language text file which is suitable input

C.3.1

for the Introl Assembler. Just before the last Compiler pass (c3)
terminates, it automatically calls the Assembler.

ASSEMBLY PHASE

The function of the assembly phase is to translate the assembly
language text file that is produced by the c3 pass of the Compiler
into a relocatable object file which is suitable input for the
Linker (or, if no linking is required, for possible input directly
to the Loader). The assembly phase, performed by the Assembler
program, is initiated automatically when the c3 Compiler pass
finishes.

During the assembly phase, the Assembler converts the assembly
language file produced by the compilation phase into a "relocatable"
output file that contains a single relocatable module. The
Assembler's output is "relocatable" from the standpoint that all
address references made within the module are independent of the
module's final absolute address location in memory. It is the
function of the Loader to determine the final location of the module
in memory and, thus, the absolute location of addresses. Therefore,
until the Assembler's output module has been processed by the
Loader, the output module generated by the Assembler is
"relocatable" because the actual position of the module in memory is
still subject to change.

Although the Assembler is capable of generating error messages, it
should remain silent if the input file is the result of a
compilation since the Compiler itself should in no case produce a
syntactically incorrect assembly language file.

When the Compiler calls the Assembler, it normally specifies an
option to the Assembler which causes the Compiler's assembly
language output file to be deleted after the Assembler has finished
using it. Thus, only the relocatable object file generated by the
Assembler normally remains as the final result for the typical
compilation/assembly process.

LINKING PHASE

The function of the Linker is to resolve external references in a
relocatable module. It does this by joining the module to other
relocatable modules which satisfy those external references. The
result of the linking process is always a single resultant
relocatable module which, if all external references have been
satisfied, is suitable input for the Loader. Since the Linker
normally calls the Loader automatically, it usually appears as if
the Linker both links and loads the input to produce an executable
file as the end result.

Whenever a program module references a label which is not defined in
that same module, it is said to have an "external reference". All
such external references must be "resolved" before the module can be
loaded to produce an executable module. Although it is possible to

C.3.2

create a program module that makes no external references, it is
more common that a module will reference many labels which are not
defined in its text; this is certainly the case with modules
produced as a result of compiling and assembling a C source file.
The Linker "resolves" such external references by first locating
other modules which define the unresolved labels, and then linking
these modules with the original module to produce a larger single
relocatable module that includes the necessary label definitions.
The Linker attempts to resolve as many external references as it
possibly can, terminating when it either has resolved all the
external references that are made or, alternatively, when it runs
out of places to look for definitions which will satisfy any
remaining unresolved references. When the Linker determines it has
resolved all the references it possibly can, it will normally
automatically call the Loader. The Linker will not complain if some
unresolved references still exist in its linked output; however,
attempts to load such modules will not be successful.

Inputs to the Linker must be relocatable modules, such as those
produced by the Assembler, or as produced by the Linker itself (ie
modules previously produced by executing the Linker alone, with the
Loader pass inhibited). Normally the Standard Library is always
searched by the Linker in its attempt to resolve necessary
references.

LOADING PHASE

During the loading phase, the Loader fixes absolutes addresses for
relocated values within a relocatable module, thereby converting a
relocatable module into an "executable" output file. The exact
format of the "executable" output file that is produced during the
loading phase is determined by which of several optionally available
Introl Loaders is being used. Depending on Loader type used, the
output file may be executable under the host operating systems or
executable under some other target operating system, or it may be a
file of load records in one of several hex formats. (See the Loader
Appendices of the Linker Reference Manual for further information.)

Normally, unless optionally overridden by the user, the 'standard'
Loader included in the Introl-C package is automatically called by
the Linker when the Linker terminates. For resident Introl-C
compilers, the "standard" Loader is one which produces an output
that is executable on the host system. For Introl-C Cross-Compiler
packages, the "standard" Loader is one that produces an output file
of hex load records.

The Loader expects its input to be a single relocatable module which
has no unresolved external references. Normally (unless optionally
overridden by the user) the Loader will complain about unresolved
external references in its input and loading of such modules will
not be successful.

 C.3.3

C.3.4

 COMPILER

The function of the Compiler is to translate a C source file into an
assembly language text file which is suitable input for the Introl
Assembler. In normal operation the Compiler always calls the
Assembler when the it finishes. Therefore, invoking the Compiler
will typically result in a fully compiled, fully assembled
relocatable output module being produced.

The result of a successful compilation will be the creation of a
relocatable object module which will have the same file name as the
original C source input file, but with the filename extension ".R".
An intermediate assembly language file is produced by the Compiler
which is used as the input to the Assembler. However, this
intermediate assembly language file is normally automatically
deleted when the Assembler finishes using it. If the user wishes to
retain the Compiler's assembly language output, a Compiler option
for doing so (the "-r" option) is provided. When the "-r" option is
specified, the assembly language output will be saved in a file
having the same name as the C source input file, but with a filename
extension of the form ".M<xx>", where <xx> represents a 2-digit
number as described below.

COMPILER COMMAND LINE

A complete 4-pass compilation and assembly is initiated using a
compiler command line of the following form:

icc <filename> {<option>}

where <filename> is the name of the C source file which is to be
compiled and {<option>} is zero or more Compiler and/or Assembler
option specifiers. (Remember the Compiler automatically calls the
Assembler when it finishes.) If no filename extension is specified
for the input file, the filename extension ".c" is assumed.

The result of a successful compilation and assembly will be a
relocatable object module, normally having the same filename as the
input file, but with the filename extension ".R" (assigned by the
Assembler). The "-r" option must be specified (see Compiler Options,
below) if the user wishes the Compiler's assembly language output
file to be retained; this assembly language file will otherwise
automatically be deleted when the Assembler finishes using it. The
Compiler's assembly language output file, if saved, will have
the same filename as the original input file, but with a filename
extension of the form ".M<xx>", where the <xx> represents a 2-digit
number. For Introl-C Compilers that target the 6809 processor, this
extension will be ".M09"; for Compilers that target the 6801 and
similar processors, the extension will be ".M01"; for 6805 targets,
".M05"; for 68000 targets,".M68"; for NS16000 targets, ".M16"; for
8086 targets, ".M86".

It should be noted that the Compiler pre-pends an underscore ("_")
at the beginning of each symbol it generates. Thus, although a

C.4.1

keyword such as "main", for example, is not preceded by any
underscore at the C programming level, it will have a pre-pended
underscore whenever it appears in any output files generated by the
Compiler. Accordingly, the Assembler and Linker expect all C symbols
in their inputs to begin with an underscore. Because of this, when
the user is writing assembly language programs for direct input to
the Assembler, or explicitly defining a "program naming function"
symbol or an "entry point" symbol at link time, any C language
symbols or C functions that are used must similarly always begin
with a leading underscore character (even though these symbols or
functions, at the C program level, do not have a leading underscore
in their names).

COMPILER COMMAND LINE OPTIONS
As indicated above, option specifiers for altering the operation of
the Compiler, and also the Assembler, may be specified on the
compiler command line. Any such option specifiers should always
appear after the input file named on the command line. Option
specifiers are indicated by a dash, "-", followed by an alphabetic
character, perhaps followed by an equals sign and parameter. The
alphabetic character indicates which option is desired and the
parameter is dependent on the option. Option specifiers which are
not pertinent to the Compiler itself are automatically passed on to
the Assembler when it is subsequently called by the Compiler. The
various options available for use are described below, grouped
according to whether they apply specifically to the Compiler, per
se, or whether they apply specifically to the Assembler pass.

Compiler-specific options include:

-a[t|d|b|s]=<loc>
 where [t|d|b|s] indicates a single letter ("t" or "d" or"b" or
 "s") and <loc> is an unsigned number between 0 and 15. This
 option will force the Compiler to place generated output of a
 specified type under any one of 16 available location counters,
 which counters are numbered from zero through 15. Data type is
 specified by the letter entry; "t" for text; "d" for data; "b"
 for bss; and "s" for strings. The <loc> entry specifies the
 location counter number. Thus the option specification "-ad=5"
 will cause all initialized data to be placed under location
 counter 5 (rather than its default counter of 1). The default
 location counter for code (text) is zero (0); the default for
 data is location counter one (1); the default for strings is
 location counter two (2); and the default for uninitialized
 data (bss) is location counter three (3).

-b=<directory>
 This option is used to specify that <directory> is the place in
 which this, and subsequent passes, can expect to find
 subsequent passes of the Compiler. This directive may be
 applied to any pass of the Compiler and is in force during
 subsequent passes.

C.4.2

-c
 This option changes the Compiler's default condition with
 respect to the "position dependency" of generated code, as
 follows. If Introl-C is being run on a host operating system
 which does not permit position dependent code to be executed,
 the compiler will default to generating only position
 independent code. In such case, this option will override this
 default condition and force the Compiler to instead generate
 position dependent code. If Introl-C is instead being run on a
 host operating system that does permit position dependent code
 to be executed, the Compiler will default to generating
 position dependent code. In such case, this option will
 override this default condition and force the Compiler to
 instead generate position independent code. Position
 independent code is code in which no absolute references are
 permitted; all jumps are relative to the program counter and
 thus are not dependent on the final location of the code in
 memory. This option is useful primarily for users who wish to
 generate code for a target machine other than the host. This
 option is used only by the c3 (code generating) pass of the
 Compiler; it may, however, be specified in the initial call to
 the first pass of the Compiler.

-d
 This option changes the Compiler's default condition with
 respect to the "position dependency" of generated data, as
 follows. If Introl-C is being used on a host operating system
 that does not permit programs with position dependent data to
 be executed, the Compiler will default to generating only
 position independent data. In such case, this option overrides
 this default condition and forces the Compiler to instead
 generate position dependent data. If Introl-C is instead being
 run on a host operating system which does permit programs with
 position dependent data to be executed, the Compiler will
 default to generating position dependent data. In such case,
 this option overrides this default condition and forces the
 Compiler to instead generate only position independent data.
 Position independent data is data that must be referenced
 through a register. The actual position of position independent
 data is not known until the necessary registers are set, just
 prior to execution of the main program. This option is useful
 primarily for users who wish to generate code for a target
 machine other than the host. Although this option is used only
 by the c3 (code generating) pass of the Compiler, it may be
 specified in the initial call to the first pass.

-g<c>
 This option specifies that an optional parser pass, named
 "cl<c>", be used (if such optional "cl<c>" pass exists) for the
 compilation process in lieu of the "standard" cl parsing pass.
 Depending upon the specific host operating system for which it
 has been supplied, some versions of the Introl-C Compiler may
 include the "standard" cl pass program as well as one or more
 optional" variations of the cl pass. The "standard" cl pass

C.4.3

 supports all features of the C language described in the
 "Definition Of Introl-C" section of this manual. The "optional"
 parser(s) provided, if any, typically omit support for one or
 more features of the C language and are usually intended to
 permit the user to circumvent memory limitations that might
 otherwise prevent compilation of large programs under certain
 host operating systems. If any optional parsers have been
 supplied for use for your particular host configuration, such
 parsers will be described in the Appendices of this manual. The
 option, of course, should only be specified if optional
 "cl<c>" parser programs have, in fact, been furnished with your
 Compiler.

-i=<directory>
 This option specifies that <directory> is the place to search
 for files specified via a #include preprocessor directive if
 the specified file cannot be found in the default locations.
 This option may be specified up to 9 times so that up to 9
 different places may be searched when the preprocessor is
 looking for an include file. If the Compiler passes are being
 run individually, this option is legal only for the c0 pass.

-k
 This option causes the name of each compilation pass (including
 the assembly pass) to be displayed on the console as that pass
 is being executed. This is useful for permitting the user to
 monitor the progress of a compilation sequence when Introl-C is
 being run under a relatively "slow" host operating system.

-m<name>{=<string>}
 This option has the effect of permitting a #define
 preprocessor directive to be specified on the command line.
 The -m option "defines" the identifier given by <name> to the
 preprocessor and assigns the value given by the optional
 <string> to this identifier.

-n
 This option prevents the next compilation pass from being
 loaded when the current pass terminates.

-r
 This option specifies that the assembly language source file
 produced by the Compiler (which will have a filename extension
 of the form ".M<xx>") should be retained. This assembly
 language file output by the Compiler is otherwise automatically
 deleted when the Assembler has finished using it.

-s
 This option instructs the Compiler to disallow nested comments.
 That is, a slash-star combination appearing within a comment
 will not be interpreted as the start of a nested comment when
 this option is specified. This option should not be confused
 with the "-s=<size>" option described below, which is intended
 to provide a completely different effect.

C.4.4

-s=<size>
 When the c2 (optimizer) pass of the Compiler is being executed
 separately, this option may be used to set the maximum size of
 the triple buffer. The buffer size will be set to the value
 indicated by <size>, which must be an integer number. Normally
 the size of the triple buffer is not of concern to the
 programmer and is otherwise automatically set by the cl pass to
 produce an efficient buffer size. The "-s=<size>" option should
 be used only when the c2 pass is being independently executed;
 if used under any other condition, the Compiler will otherwise
 interpret it as being the "-s" option,, described previously,
 which disallows nesting of comments.

-t=<directory>
 This option specifies that <directory> is the place in which
 this and subsequent passes of the Compiler are to place and
 find their temporary files.

-Y[=<n>]
 This option forces the Compiler to strip all of its identifiers
 to a maximum length of <n> characters, where <n> is a positive
 integer less than or equal to 90. If this option is not used,
 the Compiler will default to permitting identifiers to be up to
 90 characters long. The "=<n>" entry is optional and, if not
 used, will cause the maximum length to be automatically set at
 8 characters (ie the specification "-y" will strip all
 identifiers to a maximum length of 8 characters, just as would
 occur for the specification "-y=8").

-z
 This option causes all "\n" (newline) character constants to be
 interpreted as being carriage returns. This option is included
 because the definition of the "\n" character is ambigious on
 some operating systems. A "\n" is defined by the C language to
 represent both a newline and a linefeed. This works only if the
 operating system in use defines its newline character to be a
 linefeed. Unfortunately some operating systems use the carriage
 return to indicate a newline. Thus, from the Compiler's point
 of view, it is not always clear whether a linefeed or a newline
 is intended by the user when a \n character is encountered.
 This option is provided primarily for those users having
 trouble with the distinction when transporting source code from
 one type of system to another.

The following Assembler-specific options may be specified on the
compiler command line:

-o=<filename>
 This option allows the user to explicitly name the Assembler's
 output file, assigning the name indicated by <filename> to this
 output file. For example, the specification "-o=file" would
 assign the name "file.R" to the relocatable module produced by
 the Assembler. If the -o option is not specified, the object

C.4.5

 file is given the same name as the input file, except with the
 filename extension ".R". Unless the <filename> explicitly
 defines some other filename extension, the extension ".R" will
 automatically be appended by the Assembler.

-q=<class>
 This option is used to assign a numeric class specifier to the
 relocatable module produced by the compiler. The class
 specifier assigned is determined by the <class> entry, which
 can be any number from zero through 255. If this option is not
 specified, the relocatable output module produced by the
 Assembler will be assigned the default class number of zero
 ("0"). A module's class number becomes significant when
 multiple modules exist which have identical "filenames"; in
 such instances, use of a different class number for each such
 module permits any given module to be uniquely identifiable.

-u
 This option forces all undefined symbols to default to imported
 symbols. When this option is not specified, any symbol which is
 not imported and also not defined within the file will generate
 an error message.

 -X
 This option prevents an object file from being produced.

C.4.6

COMPILER ERROR MESSAGES

Compiler error messages typically occur because of one of three
basic types of "errors" being encountered during compilation. The
most common cause of an error message is that a syntax error of some
type has been detected in the C source input file. A second type of
error is when the Compiler cannot, for some reason, perform its
compilation; for example, if the disk becomes full while the
Compiler is attempting to write out one of its many temporary files.
The third type of error is one in which the Compiler fails to
operate due to an internal bug. This last type of error should, of
course, never occur but a realist should not be totally unprepared
for such a possibility.

Program error messages have the form:

file: <name> error at line <line> <message>

where <name> is the name of the file involved, <line> is the line
number in that file at which an error became apparent to the
Compiler, and <message> is a note from the Compiler which indicates
what the Compiler found unacceptable. Notice that the line number
given is the line in which a syntax error of some type first became
evident to the Compiler. This may or may not be the actual line in
the file where the program first began deviating from what the
programmer may have had in mind when he was writing it. There is
really no way for the Compiler to guess what the "real" error in a
program may be; the Compiler can only complain at the point where
the program text subsequently becomes syntactically incorrect. This
may be many lines after the line which contains the actual
programming error. Similarly, the message which the Compiler prints
out indicates what the Compiler sees the problem to be; this may or
may not be the problem as the programmer sees it.

The following are some explanations of the less obvious error
messages produced by the Compiler.

'while' expected
 The Compiler expected a "while" to follow a "do" but instead
 found something else.

arithmetic type required
 The Compiler expected an expression which evaluated to an
 arithmetic type, but instead found something else such as a
 structure or union.

bad &
 The ampersand operator was used on something which was not an
 lvalue.

bad break
 A break was encountered which was not in either a "do",
 "while", or "for" loop, or in a "switch" statement.

C.4.7

bad case
 A case label statement was encountered which was either outside
 of a switch statement or was already defined.

bad cast
 The Compiler couldn't force the desired cast. This happens when
 one attempts to cast an integer as a structure, for example.

bad continue
 A continue statement was encountered which was not in either a
 "for", "do", or "while" loop.

bad default
 A default was encountered outside of a switch statement or else
 more than one default was specified for a given switch
 statement.

cannot create output file
 The Compiler was unable to create the output file. This is
 usually because the disk is full.

cannot open #include file
 The Compiler was unable to open the specified #include file.
 This is often because the user does not have permission to read
 the file.

compiler bug
 You should never see this error. It indicates an internal error
 in the second pass of the compiler.

declaration of parameter not in parameter list
 Indicates that a variable was declared in a function header
 which was not part of the parameter list for that function.

expression stack overflow, aborting
 The Compiler's internal stack (on which it evaluates
 expressions) has overflowed. This can be remedied by breaking
 up the offending expression into smaller expressions which can
 be evaluated separately.

function required
 This indicates that some expression which is not of type
 function is being used where a function is required.

illegal #else
 An #else was encountered outside of an #ifdef or #ifndef block.

illegal #undef
 This usually means that there was no identifier following the
 #undef keyword.

illegal array reference
 An attempt was made to reference an array in an illegal
 fashion.

C.4.8

illegal character
 An illegal character was encountered in the input file. This is
 usually due to a preprocessor directive which does not begin
 in column 1 but may also be caused by a missing open quote or
 open comment. Most control characters are considered illegal.

illegal return type
 The return type of a function was not of simple type. No
 structures or unions may be returned as function values
 (although pointers to them may be returned).

label used but not defined in function
 A label was used on a goto but was never defined. Labels are
 always local to the function in which they are defined.

lvalue required
 This means that the Compiler expected an expression which could
 be used to represent a changeable value but did not find one.
 An lvalue is a value which represents a changeable value. For
 example if the variable XX is defined as an integer then it may
 be used (almost) anywhere an integer constant can be used. But
 it may also be used in places where it is illegal to use a
 constant, like on the left hand side of an assignment operator.
 Thus XX is an lvalue whereas a constant is not.

missing "'" or character constant too long
 This indicates that more than one character was found in a
 quote constant. Either the terminating "'" is missing or there
 is more than one character between the starting "'" and the
 terminating "'". Cnntrol characters which begin with a
 backslash are considered to be a single character.

missing member name
 A reference to a member name was made which was not declared to
 be a member of the original structure.

multiple symbol definition
 Indicates that the symbol following the dash has been defined
 more than once.

no matching #if for #endif
 An #endif was encountered but no #ifdef or #ifndef preceded it.

pointer type required
 This indicates that an operation was attemoted on an expression
 which should be (but is not) of pointer type.

preprocessor bug #l
 You should never see this one. It indicates that there is an
 internal error in the first pass of the compiler.

string improperly terminated: unexpected EOF
 This usually means a missing close quote.

C.4.9

string too long, truncated at right
 This indicates that a string exceeded the maximum string
 constant length (the current limit is 256 characters, including
 the terminating NULL).

struct/union tag used but not defined in block
 A structure or union tag was used but not defined in the
 current program file, function, or block.

structure/union size unknown
 This message is generated when the size of a structure or union
 is required (as in the sizeof operator) but is not known
 because the struct or union definition has not yet been
 encountered.

too many #define parameters
 Too many parameters in a #define directive. The current limit
 is approximately 25.

too many nested #ifs
 Too many nested #ifdef or #ifndef directives. This includes
 those due to #include files. The current limit is approximately
 15.

unbalanced comment
 This indicates that the End Of File was encountered before a
 comment was completed. Remember: Introl-C allows nesting of
 comments. Each /* must have its own */ to terminate it.

undeclared identifier, assuming auto int
 An identifier was encountered which has not been defined. The
 Compiler will assume it was declared as an automatic integer.
 Notice that this assumption may cause the Compiler to generate
 additional error messages if the identifier is used in a
 fashion which is not permitted for an auto int.

unexpected end of file, unbalanced #if, #ifdef, or #ifndef
 The End Of File was encountered before an #ifdef or #ifndef was
 completed by an #endif directive.

unexpected end of file
 The End of File was encountered while the Compiler was still
 trying to complete some construct. For example, if the Compiler
 has not yet encountered the closing brace of a function
 definition and encounters the EOF, it will print this message.

unmatched paren or quote in macro call ... end of file
 The End Of File was encountered while the Compiler was
 searching for an expected close quote or a right paren.

unrecognizable preprocessor directive
 This indicates that a # in column 1 was followed by an unknown
 directive. Check the spelling of the directive.

C.4.10

warning - undefined operator on pointer type
 This indicates that an operation was attempted involving a
 pointer which is not permitted on operands of type pointer.

warning - expression with no effect, ignored
 This indicates that the ComDiler has found an expression with
 no effect. That is, no variable is updated as a result of the
 expression. No code is generated for the expression.

warning - union or struct as function parameter, '&' added
 This indicates that an attempt was made to pass an expression
 of type struct or union as a function parameter. Currently this
 is disallowed by the Compiler. The Compiler will insert an
 ampersand so that a pointer to the structure will be passed
 instead.

C.4.11

C.4.12

 ASSEMBLER

The Assembler furnished with Introl-C is a relocating assembler
designed to translate an assembly language text file, as produced by
the Introl Compiler, into a relocatable object file. This object
file may then be linked, if need be, to other relocatable object
files and loaded to produce a file which is in executable format.

In normal usage, the Compiler always automatically calls the
Assembler when the Compiler, per se, finishes. The Assembler, in
turn, then assembles the output generated by the Compiler to produce
a relocatable object module as the final result of a compilation.
The relocatable module that is produced by the Assembler will
typically have the same filename as the original input, file, but
with the filename extension ".R" appended.

When the Compiler automatically calls the Assembler, the Compiler
passes 3 Assembler option specifiers to the Assembler; specifically,
the "-n", the "-s", and the "-z" Assembler options are passed. The
"-n" and "-s" option specifiers prevent the Assembler from
generating any type of assembly output listing and symbol table
listing, respectively; the "-z" specifier causes the Assembler to
delete its assembly language input file (ie the Compiler's output
file) when it has finished using it. Although the effect of the
Compiler-supplied "-z" specifier to the Assembler can be overridden
via a compiler command line option (ie with the '-r" Compiler
option, which forces the Compiler's output file to be retained),
there is no provision made to similarly override the automatically
supplied "-n" and "-s" Assembler options. All this means is that the
Assembler's output listing and symbol table listing will never be
available as the result of a "conventional" compilation/assembly
sequence. The Assembler's output listing and symbol table are
readily available to the user, however, although a 2-step process is
involved: (1) first, compiling/assembling the program with the "-r"
specified on the compiler command line to "save" the ".M<xx>"
assembly language file produced by the Compiler, and (2) then
invoking the Assembler independently to separately assemble this
".M<xx>" file, thereby generating the desired output listing and
symbol table as a result. As noted in the Compiler section of this
manual, all symbols appearing in any output generated by the
Compiler will will be pre-pended with an underscore character, which
is automatically added to all symbols by the Compiler.

As inferred by the preceeding comments, although the Assembler is
nominally supplied for use by the Compiler proper, it is also
possible for the user to independently call the Assembler for
assembling assembly language programs directly - either assembly
language files which have been previously produced by the Compiler,
or assembly language programs that may have been written by the
user. The ability to independently use the Assembler in this way is
very useful, for example, when the user wishes to include an
assembly language routine as a part of a larger overall C program,
or to produce a separate assembly language program. The remainder of
this Assembler Section is concerned with using the Assembler

C.5.1

independent of the compiler for these types of purposes.

ASSEMBLER COMMAND LINE

The Assembler may be called independently by entering a line of the
form:

r<xx> <file> {<options>}

where r<xx> represents the Introl filename of the Relocating
Assembler, <file> is the name of the assembly language source file,
and {<options>) represents zero or more Assembler option specifiers.
The Assembler's assembly language input file is expected to have a
filename extension; if none is explicitly specified, a filename
extension of the form ".M<xx>" is assumed. The output file produced
by the Assembler will be a relocatable module, normally having the
same name as the input file, but with the filename extension ".R".

The "<xx>" as used in both the "r<xx>" and the ".M<xx>"
designations mentioned above, represents a 2-digit number unique to
the particular Introl-C compiler package being used. For those
Introl-C packages that target the 6809 processor, the "<xx>"
represents the digits "09"; for versions that target the 6801 and
similar processors, "<xx>" represents the digits "01"; for versions
targeting the 6805, "<xx>" represents "05"; for versions that target
the 68000, "<xx>" represents the digits "68"; for versions that
target the NS16000, "<xx>" represents "16"; for versions that target
the 8086, "<xx>" represents "86". Therefore, if the Introl-C package
happens to target the 6809, for example, the appropriate filename
for the Relocating Assembler would be "r09", and the default
extension assumed for the Assemblerls'input files would be ".M09".

ASSEMBLER OPTIONS

Assembler options are listed and described below. Some of these
options may be legally specified on the compiler call line when the
Assembler is being called automatically as the result of a
compilation. However, most of the Assembler options are legal, or
will have meaning, only when the Assembler is being called
independently by the user.

-a
 The "-a" option forces all symbols except those that begin with
 a question mark, "?", to be placed in the object file. Usually
 only the externals and undefined symbols are included in the
 object file. This Assembler option may not be legally used on a
 compiler command line since it conflicts with the already
 existing (and totally different) "-a" option provided for the
 Compiler proper.

-c
 This option causes the output listing produced by the Assembler
 to be sent to the console. This Assembler option may not be
 legally used on a compiler command line since it conflicts with

C.5.2

 a preexisting (and totally different) "-c" Compiler option.

-i
 This option forces listing of all included files. Normally,
 included files are not part of the output listing. This option
 may not be legally used on a compiler command line since it
 conflicts with a preexisting (and totally different) "-i"
 Compiler option.

-j
 This option forces all symbols which begin with a question
 mark, "?", to be listed in the symbol table. Unless this option
 is used, symbols which begin with a question mark are not
 listed as part of the symbol table listing. The Introl-C
 Compiler uses such labels as targets of short jumps. They are
 not normally listed because they are not generally of interest
 to the programmer. This option will have no effect if used on a
 compiler command line inasmuch as a symbol table is never
 generated as a result of a compiler command line call. A symbol
 table may only be produced it the Assembler is invoked
 independently to assemble an assembly language file.

-l=<filename>
 This option specifies that <filename> is the name of the file
 in which the Assembler's output listing is to be placed. This
 causes the listing to be placed in the named file. This option
 has no effect if used on a compiler command line since an
 output listing cannot be produced as a result of a compiler
 command line call. An Assembler output listing can be produced
 only if the user invokes the Assembler independently to
 assemble an assembly language file.

-n
 This option prevents an assembly output listing from being
 produced. This is one of the three Assembler options
 automatically passed to the Assembler when it is called by the
 Compiler. This option may not be legally specified on a
 compiler command line since it conflicts with a preexisting
 (and totally different) "-n" Compiler option.

-o=<filename>
 This option allows the user to explicitly name the output file,
 and assigns the name <filename> to it. If this option is not
 specified, the object file will otherwise be given the same
 name as the input file, but with the filename extension ".R".
 If the <filename> that is assigned via this option does not
 include a filename extension, the default filename extension
 ".R" will be appended by the Assembler. This option may be
 legally specified on a compiler command line.

-q=<class>
 This option assigns the class number indicated by <class> to
 the output object file generated by the Assembler. The <class>
 entry may be any number from zero ("0") to 256. If this option

C.5.3

 is not used, the module's class specifier will default to being
 class zero (ie "0"). A module's class number is a file
 identification attribute and is usually of importance only if
 identical filenames are assigned to several separate modules by
 the user; in such case, the class number attribute allows any
 specific module to be unambiguously distinguished from all
 other identically named modules. This option may be legally
 used on a compiler command line.

-s
 This option suppresses the listing of the symbol table. This
 option is one of the three Assembler options automatically
 passed to the Assembler when it is called by the Compiler. This
 option may not be legally specified on a compiler command line
 since it conflicts with a preexisting (and totally different)
 "-s" Compiler option.

-u
 This option forces all undefined symbols to default to imported
 symbols. Without this option any symbol which is not imported
 and also not defined in the file will generate an error
 message.

-x
 This option prevents a relocatable object file from being
 produced. This option may be legally specified on a compiler
 command line.

-z
 This option deletes the Assembler's input file when the
 Assembler has finished using it. This is one of the three
 Assembler options passed to the Assembler when it is
 automatically called by the Compiler: it is the option
 responsible for causing the the Compiler's output file to be
 normally deleted when the Assembler has finished using it. The
 effect of the "-z" specifier that is normally supplied by the
 Compiler in such case can be nullified by specifying the "-r"
 Compiler option on the compiler command line, as was mentioned.
 earlier. The '-z" Assembler option may not be legally specified
 on a compiler command line since it conflicts with a
 preexisting (and totally different) "-z" Compiler option.

C.5.4

DEFINITION OF LEGAL INPUT

This section describes the legal input to the Introl Relocating
Assembler.

INPUT FILE SPECIFICATION
The input file expected by the Assembler is an ASCII text file which
contains assembler text. If the input file has been generated by the
Compiler it will already have an acpropriate ".M<xx>" extension, as
discussed previously. If the file named on the assembler call line
has no extension specified, the Assembler will attach the
appropriate ".M<xx>" extension before it attempts to locate the
file. A file's extension is assumed to consist of a period and any
trailing characters.

INPUT LINE
Each line input to the Assembler is assumed to have the form:

[<label>] [<opfield> [<operand>{,<operand>}]] [<comment>]

 or

*<comment>

where <label> represents a symbol,
 <opfield> represents an opcode or pseudo-op,
 <operand> represents an expression,
 and <comment> represents any string of characters.

Those items enclosed in square brackets "[" and "]" are optional,
while an item enclosed in curly brackets, "{" and "}", may be
repeated zero or more times. Thus an input line may consist of an
optional label, followed by at least one space, followed by an
optional opfield, followed by at least one space, followed by zero
or more operands separated by commas, optionally followed by at
least one space and a comment. If a label is specified, it must
begin in column one. It is also legal to indicate an entire line as
being a comment by placing a star, "*", in column one. If no label
is specified, column one must be a blank or a star. An example of a
legal input line:

loop jmp loop This is VERY tight loop

 or

* This whole line is a comment

SYMBOLS
Symbols are made up of letters (a..z, A..Z), digits (0..9), the
question mark (?), the dollar sign (s), the underscore (_) and the
period (.). Symbols must begin with either a letter or a period or
an underscore or a question mark and may be any length. In the
special case of symbols that reference C functions, such symbols

C.5.5

must ALWAYS be preceded by a leading underscore character (ie,
just
as the Compiler pre-pends an underscore to all symbols it
generates). The first one hundred characters of a symbol are
retained by the Assembler. Case is not ignored when the Assembler
compares two symbols: "abc" is NOT equal to "ABC" is NOT equal to
"AbC'.

Valid Symbols:
 .abc
 abc09
 .9
 Very.long.symbol.only.the.first.100.characters.count
 ..PIA10.

Although one hundred characters are significant to the Assembler,
when the symbol table is output, only the first sixteen characters
of the symbol are printed so that the printout will look better.

OPCODES
In general, the opcodes recognized by the Assembler are the standard
opcodes, recognized by the microprocessor manufacturer's assemblers.
All opcodes can be placed anywhere on the source line after the
statement label, or at least one space or tab from the beginning of
the source line if no label is present. Opcodes may be in either
upper or lower case.

PSEUDO-OPS
Pseudo-ops are a set of mnemonics which represent commands to the
Assember rather than instructions to be coded. The legal pseudo-ops
are described below in the section on assembler directives.

EXPRESSIONS
The Assembler accepts assembly type expressions that are arbitrarily
complex. Several operators are allowed in assembly time expressions
(alternate forms listed on the same line are identical in function):

 - unary minus (two's complement)
 ~ not (one's complement)
 * multiplication
 / division
 % mod (remainder)
 + addition
 - subtraction
 << shift left
 >> shift right
 & bitwise and
 ^ bitwise exclusive or
 | bitwise inclusive or
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 == equal to
 != not equal to

C.5.6

Operator precedence of the above operators is, from highest
to
lowest (alternate forms have the same precedence as regular forms):

 - ~
 * / %
 + -
 >> <<
 > < <= >=
 == !=
 &
 ^
 |

Parentheses are allowed in expressions to change the precedence of
an expression.

Assembly time expressions can be used in the operand of any
assembler opcode or directive. Symbols and constant values can be
used interchangeably in an expression. All results of expressions at
assembly time are 32 bit, truncated integers. Constant values are
defined as a numeric digit (0..9), followed by zero or more numeric
digits or the letters A..F, followed by a radix indicator.

n<radix>

where n is 0..9,A..F (must be a valid digit in the given radix),
preceded by a numeric digit, and <radix> is

 H hexadecimal
 O,Q octal
 B binary
 D or nothing decimal

An alternate way of specifying constants is by preceding the
constant by the alternate radix indicator followed by one or more
valid digits in the given radix.

 <altrad>n

where <altrad> is

 $ hexadecimal
 @ octal
 # binary
 & or nothing decimal

and n is 0..9,A..F (must be a valid digit in the given radix). No
preceding numeric digit is required.

Constants may also be ASCII character constants, either one or two
characters long:

 '<ch> is a one character constant
 "<chch> is a two character constant

C.5.7

The Assembler also recognizes a special constant that represents
the
assembly time location counter: "$" or "*". When "$" or "*" is used
in an expression, the value taken is the location counter at the
instant of assembly of the line containing the "$" or "*".

Examples of Constants:

 01010101B
 17q
 $10
 17777o
 "AB
 567H
 %0110101
 0ffffh
 '@
 13
 7FFH
 $
 *

Examples of valid expressions:

 (start-end)>2 start minus end shifted right by two

 abc*5 five times the value of abc

 'a!80h ascii value of 'a' 0Red with 80 hex

 $+4 value of the location counter plus four

 *-3 value of the location counter minus three

 $FFFF<<(3-LABEL)+* ?????

ADDRESSING MODES
All addressing modes of the microprocessor are recognized by the
Assembler.

ASSEMBLER DIRECTIVES
The following is a list of assembler directives. An assembler
directive is a line which issues a command to the Assembler. All
assembler directives may be in either upper or lower case.

comm - Common Area
This directive has the form:

<label> comm <size>

where <label> is any legal identifier and <size> is an absolute
expression which indicates the size, in bytes, which should be
reserved for the label. The comm directive has virtually the same
effect as the import directive except that, if the Linker cannot

C.5.8

find any definition to satisfy the external reference, it will
reserve a location in the bss segment segment of <size> number of
bytes. A label may appear in any number of comm directives.

dc - Define Data Constant
This directive has the form:

[<label>] dc[.<sizecode>l <expression>{,<expression>}

where <sizecode> indicates an optional letter ("b", "W", or 11110)
which indicates the size of the data object (byte, word, or long).
The <expression> is an absolute or relocatable expression whose
value is placed in the location. Multiple locations may be defined
by a single dc directive by specifying multiple expressions
separated by commas. Each expression will be evaluated and the
resultant values will be placed in successive locations, each of
which is assumed to be the size indicated by the size code letter.
If the size code letter is omitted, the size is assumed to be the
size of an integer (2 bytes). In the case of the dc directive it is
permitted to have an expression of the form:

 '<string>'

where <string> is one or more ASCII characters. The characters will
be packed into successive bytes.

ds - Define Data Storage
This directive has the form:

(<label>] ds[.<sizecode>] <size>

where <sizecode> indicates an optional letter ("b","w",or "l") which
indicates the size of the data object (byte, word, long). The <size>
indicates the number of data objects for which space is to be
reserved. The number of bytes reserved is the <size> multiplied by
the size of the data object (1, 2, or 4 bytes).

end - End of Assembly
This directive has the form:

 end [<label>]

where [<label>] is an optional label which, if specified, causes the
output module's entry point to be set to that indicated by the
label. The label should be an external label which must have been
defined before the occurrence of the "end" directive. This directive
is used to signal the end of input for the Assembler.

equ - Equate Svmbal With A Value
This directive has the form:

 {<label>} equ <expression> {<comment>}

The equ directive gives the value of the expression in the operand

C.5.9

to the label. The label and operand are both required with an
equ
directive; the comment is optional. The equ directive is similar in
function to the "set" directive except that a symbol defined with an
equ cannot be redefined elsewhere in the program. The <expression>
cannot contain external references, forward references, or undefined
symbols; it may, however, be relocatable.

 one equ 1 equate the value 1 to one
 five equ one*5 equate the value one times 5 to five

err - Programmer-Generated Error
This directive has the form:

 err {<string>}

The err directive will cause an error message to be printed by the
Assembler. The total error count will be incremented as with any
other error. The err directive is normally used in conjunction with
conditional assembly directives for condition checking. The assembly
proceeds normally after the error has been printed. The optional
{<string>} may be used to specify the nature of the error generated.

export - External Symbol Definition
This directive has the form:

 export <symbol>{,<symbol>,...,<symbol>} {<comment>}

The export directive is used to specify that the list of symbols is
defined within the current source program, and that these symbol
definitions should be passed to the Linker so other programs may
reference them. If the symbols contained in the operand of this
directive are not defined in the program, an error will be
generated.

fcb - Form Constant Byte
This directive has the form:

{<label>} fcb <expression list> {<comment>}

The fcb directive allows the programmer to define a byte constant or
series of byte constants. The <expression list> in the fcb operand
is a sequence of one or more expressions separated by commas. The
value of each expression is truncated to 8 bits and stored as a
single byte in the object program. Multiple expressions are stored
in successive bytes. If a field between two commas is empty, a zero
value is stored for that byte. The label and comment fields are
optional. An error will occur if the upper eight bits of each
expression in the operand do not evaluate to all zero's or all
one's.

table fcb 0,1,2,3,0fh,27q,7
 fcb 0,,,,,,,,,0 ten zero bvtes
 fcb five,one,4*5,'A

C.5.10

fcc - Form Constant Character
This directive has the form:

{<label>} fcc <delimiter><string><delimiter> {<comment>}

 -or-

{<label>} fcc <expression>,<string> {<comment>}

The fcc directive converts a string of characters into a sequence of
bytes containing the characters' ASCII-values. Two forms of the fcc
directive are available. The first form above delimits the string to
be saved by a delimiter character which can be any character except
the numeric (0..9) digits. The delimiter character cannot appear in
the given string. The second form of the fcc directive takes two
arguments, separated by a comma. The first argument is an expression
representing the length of the subsequent string. The expression
argument of the fcc directive must begin with a numeric (0..9)
digit. The length expression represents the exact length of the
resultant string: if the given string is longer than this length,
the string is truncated; if the given string is shorter than this
length, the string is expanded with spaces (ASCII 20H). When the
length expression is longer than the given string, there is a danger
that a comment, if one is given, may be taken as part of the string.
It is usually better to leave comments out of this type of fcc
directive.

msgl fcc 'this is a string' "'" is the delimiter
 fcc /this is another string/ "/" is the delimiter
ms92 fcc 64,this is yet another
 fcc 26,abcdefghijklmnopqrstuvwxyz
 fcc /abcdefghijklmnopqrstuvwxyz/

The last two examples save exactly the same sequence of bytes in
memory: the 26 lower case alphabetic characters, in order.

fdb - Form Double Byte Constant
This directive has the form:

 {<label>} fdb <expression list> {<comment>}

The fdb directive is similar to the fcb directive above except that,
whereas the fcb directive causes each expression in the list to be
taken as a byte value, the fdb directive instead causes each
expression to be taken as a double byte, or word, value.

address.table
 fdb routine.l,routine.2,routine.3
 fdb routine.4,routine.6
address.table.length equ ($-address-table)/2

 fdb 1024*48,address.table,address.table.length
 fdb "AB,01010101B,37D

C.5.11

ident - identify module
This directive has the form:

 ident <name>,<class>,<rev>

where <name> will be the name of the output module, <class> is an
integer from "C" to "255" which specifies the class number to be
given the resultant module, and <rev> is a revision number to be
given the resultant module. If the class or revision numbers are
left unspecified they will default to zero (0). If the module name
is left unspecified it will default to the filename of the assembly
language input file, minus any extension.

import - External Symbol Reference
This directive has the form:

 import (<loc>:]<sym>{,[<loc>:]<sym>}

where <loc> represents an optional location counter specification
and <sym> is some symbol to be imported. The import directive is
used to inform the Assembler that the named symbols are referenced
by the current source program but are defined elsewhere. Each symbol
in the list may be preceded by an optional absolute expression whose
value must be between 0 and 15. The expression indicates the
location counter the corresponding symbol is assumed to be under.
The Linker will issue an error message if the symbol has been
specified under a different location counter than the one listed on
the import directive.

If import is not used to specify that a symbol is defined in another
program, an error will be generated, and all references to the
symbol in the current program will be flagged as being undefined.

lib - Load A Disk File
This directive-has the form:

 lib <filename>

The lib directive makes it possible to read a disk file as part of
the assembly process. The file is used as if is were actually a part
of the source code being assembled. The <filename> argument should
be a valid file name for the system you are using.

 lib MYFILE.MO9

list
This directive has the form:

 list

The list directive reverses the effect of a previous nolist
directive. (See the nolist directive below for a description of its
function).

C.5.12

loc
This directive has the form:

 loc <counter>

where <counter> is an integer within the range 0 to 15. This
directive indicates that all code generated until the next "loc"
directive will be placed under the named location counter.

nolist
This directive has the form:

 nolist

The nolist directive prevents the code following it from being
listed in the assembler output listing. The nolist directive works
in conjunction with the "list" directive, decribed earlier, to
bracket code which is not to appear in the output listing. A nolist
is in effect until a list directive appears. The list and nolist
directives may be nested; therefore, in order to nullify two
successive nolist directives, the Assembler must subsequently
encounter two successive list directives.

offset
This directive has the form:

 offset <expression> (<comment>)

The offset directive allows the user to generate labels whose values
represent absolute offsets from some origin. This is useful in
defining labels which are to be used as offsets into predefined
tables.

 offset 0 set offset at zero
data ds.b 2 set label "data" equal to 0
data2 ds.b 1 set label "data2" equal to 2

C.5.13

rmb - Reserve Memory Bytes
This directive, which is identical to the ds.b form of the ds
directive discussed previously, is defined as follows:

{<label>} rmb <expression> {<comment>}

The rmb directive causes the location counter to be incremented an
amount specified by the expression in the operand field. This
reserves an area in memory whose length, in bytes, is equal to the
value of the operand expression. The memory area reserved by the rmb
directive is uninitialized by the directive. The expression cannot
contain external references, forward references, or undefined
symbols. The label and comment fields are optional.

xtable rmb 256 save 256 byte for xtable
 rmb 20 save 20 bytes for the stack
stack
data rmb 1024*4 save 4K for data area
buffer.length equ 132
buffer rmb buffer.length reserve buffer space

set - Set Symbol To A Value
This directive has the form:

<label> set <expression> {<comment>}

The set directive assigns the value of the expression to the label.
Function of the set directive is similar to that of equ except that
labels defined using set can have their values redefined in another
part of the program by using another set directive. The set
directive is useful for establishing temporary or re-usable counters
within macros.

syn - Equate Labels
This directive has the form.

<symbol> syn <symbol>

where <symbol> is any previously defined symbol. This directive
makes the first symbol synonomous with the second symbol. The new
symbol has all the attributes of the original. Thus the user may
redefine opcodes, register names, labels, or any other symbol.

C.5.14

 DEFINITION OF INTROL-C

This section provides a detailed definition of the Introl-C
implementation of the C programming language. It assumes the reader
already has a reasonable understanding of "standard" C and is not
intended to serve as a tutorial on the C language.

LEXICAL CONVENTIONS

WHITE SPACE
Blanks, tabs, newlines, and comments are considered "white space".
For the most part the Compiler ignores white space, although,
occasionally white space may be required to separate otherwise
adjacent identifiers, keywords, and constants.

COMMENTS
The character combination slash star (/*) indicates the beginning of
a comment. Comments must be terminated with a star slash combination
(*/). Comments are considered white space and have the same effect
as a blank. Introl-C allows comments to be nested, permitting large
sections of code (which may already contain comments) to be
"commented out" by simply bracketing the section with /* and */.
This is not possible in "standard" C since standard C does not allow
nesting of comments. Introl-C provides a Compiler option (the "-s"
option) to permit the user to override this "nesting of comments"
feature if the user wishes to disallow nested comments. Each slash
star (/*) combination used in a comment requires that a matching */
terminator also appear in the comment. That is, the following may
not do what you would think:

/* This comment /* doesn't end at this terminator -> */

Comments are removed from text before preprocessor directives are
evaluated; thus preprocessor directives may also be "commented out"
by bracketing them with /* and */.

IDENTIFIERS
An identifier consists of an Alphabetic letter followed by zero or
more letters or digits. There is no limit on the number of
characters which may be used to specify an identifier, although only
the first ninety (90) characters will be considered significant. A
Compiler option (the "-y[=<n>]" option) is provided to permit the
user to set the maximum identifier length to values less than the
normal maximum of ninety characters. The underscore, (_), counts as
a letter. Upper and lower case letters are considered to be
different.

KEYWORDS
The following identifiers are reserved and may not be redefined by
the user.

auto double int struct
break else long switch
case extern register typedef

C.6.1

char float return union
continue for short unsigned
default goto sizeof while
do if static

CONSTANTS

Integer Constants: Integer constants may be represented in several
different formats. A string of digits beginning with a 0 (zero) is
taken to be in octal; the digits 8 and 9, if used, are taken to have
the octal values 10 and 11 respectively. If the constant begins with
an 0x or 0X (zero x) it is taken to be hexadecimal and the
characters A through F (either upper or lower case) may be used to
represent the decimal values 10 through 15 respectively. If there is
no preceding 0 or 0x or 0X, the constant is taken to be decimal. A
decimal constant which is greater than the largest signed integer is
taken to be a long. An octal or hexadecimal constant which is
greater than the largest unsigned integer is taken to be long.

Long Constants: Long constants may be declared explicitly. A
decimal, hexadecimal, or octal constant which is terminated with the
letter L (either upper or lower case is permitted) is taken to be
long. Long constants are implemented in 32-bit two's- complement
form.

Character Constants: A character constant is any graphic or
non-graphic character enclosed in single quotes; 'x' for example.
The value of a character constant taken to be the numerical value
used to define that character in the machine's character set
(usually ASCII).

The single quote character ('), the backslash character (\) and
various non-graphic characters may be represented by the following
character combinations:

newline \n
horizontal tab \t
backspace \b
linefeed \l
carriage return \r
form feed \f
backslash \\
single quote \'
bit pattern \ddd Where ddd is 1,2 or 3 octal digits
 which specify the character's value.

 *Note: Introl-C normally interprets "\-n" (ie the newline
 character in C) as being a linefeed character; however, a
 Compiler option (the "-z" option) may be used to instead equate
 "\n" with being a carriage return character.

Unless a backslash is used in one of the above character
combinations, the backslash will normally be ignored. Character
constants are represented as a single 8-bit unsigned byte.

C.6.2

Floating Constants: A floating point constant consists of an integer
part, a decimal point, a fractional part, and an exponential part.
The integer and fractional parts each consist of a string of one or
more digits. The exponential part consists of an "E" (either upper
or lower case), followed by an optionally signed integer. Either the
integer part or the fractional part (but not both) may be missing;
either the decimal point or the exponential part (but not both) may
be missing.

Strings: A string consists of a sequence of zero or more characters
placed between a set of double quote marks, as in "this is a
string". A string has the type Array Of Characters and thus may be
used anywhere an array of characters would be appropriate. All
strings are treated as uniquely distinct data objects, even when
they contain identical sequences of characters. The Compiler will
place a null byte (\0) at the end of each string so that functions
which scan the string can determine its end by the usual means. All
the conventions for representing non-graphic characters which apply
to character constants apply to strings as well. To represent a
double quote inside a string it is necessary to precede it with a
backslash. Strings may be continued on a new line by inserting a
backslash followed immediately by a carriage return. The backslash
carriage return combination is not considered part of the string.

PRE-PROCESSOR DIRECTIVES
A preprocessor directive is an instruction to the preprocessor
(lexical scanner) which controls the input to the Compiler proper.
These directives control such things as file insertion (#include),
textual substitution (#define), and conditional compilation
(#ifdef). Pre-processor directives always start with a pound sign
(#) and must begin in column one. The effect of these directives is
the controlled alteration of the program text input to the compiler.
The directives supported by Introl-C are #define, #else, #endif,
#ifdef, #ifndef, #include, #undef. Their function is explained
below.

#define: The #define directive allows an identifier to be equated
with a string. There are two forms of the define directive. One case
handles simple string substitution, in which a token-string will be
substituted for any occurrence of the identifier which appears in
the program text following the #define statement. The other case
allows parameter substitution, so that sections of the replacement
string may be specified at the place in the code where the
identifier is used. The first case of the #define directive, calling
for simple string substitution, has the following form:

#define <identifier> <string>

where <identifier> represents the name of the identifier and
<string> is any series of characters. The <string> is optional.
There must be at least one space between the word #define and the
identifier. This form of the define statement causes any occurrence

C.6.3

of the identifier which appears in the program text following the
define statement to be replaced with the strings. Notice that there
is no semicolon required at the end of a #define directive. The
<string> is taken to be all the characters which follow the
identifier on the #define line. Thus, it is incorrect to place a
semicolon at the end of the line unless it is actually intended to
include a semicolon in the replacement string.

The second form of the #define directive looks like this:

#define <identifier>(<identifier>,...,<identifier>) <string>

This form of the define statement (called a macro definition) has a
set of parameters following the first identifier. Notice that the
left parenthesis of the parameter list must immediately follow the
first identifier with no intervening white space. If there is any
white space following the identifier, the preprocessor will
interpret the #define statement as being of the simple string
substitution type described above and will treat the parameter list
as if it is part of the <string>. The parameter list consists of a
series of identifiers separated by commas. Each identifier in the
parameter list should appear at least once in the <string>. When the
defined identifier appears in the program text it may be followed by
an argument list enclosed in parentheses and containing strings
separated by commas. If so, these strings will be substituted for
their respective parameter identifiers in the <string> of the define
statement before the <string> replaces the identifier in the program
text.

The #define preprocessor directive has the additional effect of
"defining" an identifier for use with the #ifdef and #ifndef
preprocessor directives. It is permissible to have a #define
statement with no <string> parameter; this will simply "define" the
identifier within the preprocessor.

#else: This directive modifies the effect of a previously declared,
non-terminated #ifdef or #ifndef conditional compilation
preprocessor directive. If the lines preceding #else were being
ignored because of an #ifdef or #ifndef, the #else directive will
cause the lines following the #else to be processed. Likewise if the
lines preceding #else were being processed because of an #ifdef or
#ifndef, the lines following the #else will be ignored. The effect
of the #else directive lasts until an #endif directive is
encountered. The #else directive has the following form:

#else

#endif: This directive terminates the the most recent previously
declared #ifdef or #ifndef directive. It has the following form:

#endif

#ifdef: The #ifdef directive is used to denote the starting point of
a section of code which is subject to conditional compilations. This

C.6.4

directive has the form;

#ifdef <identifier>

where <identifier> represents an identifier name. If the named
identifier is currently "defined" in the preprocessor, the lines
following the #ifdef directive will be processed until an #else
control line is encountered or, in the absence of an #else, until
the #endef directive is encountered; any lines between #else (if
present) and #endef are ignored for this case. If the identifier
named on the #ifdef line is NOT currently defined, then only the
lines between the #else (if present) and the #endef terminator line
will be processed. An identifier is taken to be "defined" if it has
previously appeared as the identifier on a #define preprocessor
directive line. An identifier is taken to be "undefined" if it has
previously appeared on an #undef preprocessor directive line, or if
it has never appeared on a #define directive line.

#ifndef: The #ifndef directive is similar in function to #ifdef,
above, except that compilation of subsequent code is conditional
upon an the identifier being currently "undefined" in the
preprocessor. The #ifndef directive has the form:

#ifndef <identifier>

where <identifier> is the identifier name. If the named identifier
is NOT currently defined, subsequent lines will be processed until
an #else control line is encountered or, in the absence of an #else,
until the #endif directive is encountered; any lines between #else,
(if present) and #endef are ignored in this case. If the identifier
named on the #ifndef line IS currently defined, only the lines
between the #else directive (if present) and the #endef terminator
line will be processed. An identifier is taken to be "undefined" if
it has previously appeared as the identifier on an #undef
preprocessor directive line, or if it has never appeared on a
#define preprocessor directive line. An identifier is taken to be
"defined" if it has previously appeared on a #define preprocessor
directive line.

#include: The #include directive causes the file specified on the
#include line to be inserted in the program text in place of the
#include line. Either of the following forms are permitted:

#include "filename"

or

#include <filename>

where filename is the name of the file to be included. Notice that
the Introl-C compiler allows either angle brackets or double quotes
to surround the filename. Included files may themselves contain
include statements; that is, #include directives may be nested, with
a limit imposed only by the constraints of the operating system.

C.6.5

#undef: The #undef directive causes the named identifier to be
"undefined". Thus any subsequent #ifdef and #ifndef directives which
reference the identifier will operate as if it was never defined. It
has the form

#undef <identifier>

where <identifier> is the name of the identifier that is to be
undefined.

DATA CONVENTIONS

All user defined identifiers have two attributes, (1) storage class
and (2) type, which are described below.

STORAGE CLASS
An identifier's storage class indicates the location, scope and
lifetime of the storage associated with the identifier. There are
four different storage classes: auto, extern, static, and register.

auto: Automatic variables are local to the block or function in
which they are defined. They exist only while the block or function
in which they were defined is executing. Their contents are
discarded upon exit from the block. Variables in a function which
are not explicitly defined as having a specific storage class are
assumed to be automatic (ie auto) variables.

extern: External variables exist for the entire execution of the
program and retain their values throughout the execution of the
program. An external variable may be referenced by any function in
the program file in which it was defined. Also, separately compiled
program files which declare external variables of the same name
refer to the same variable, thus allowing communication between
separately compiled program files.

In Introl-C there is little distinction made between an external
"definition" and an external "declaration". It is possible to link
several files together in which an external variable has been
declared but never defined; the linker will simply define the
variable to fit the declarations. It is also permitted to link files
in which an external variable has been defined more than once; the
linker will simply treat the extra definitions as if they were
declarations. The linker will issue a warning if an external
variable has multiple incompatible definitions in a group of files
to be linked. An external variable may be initialized only once
among all the program files-to be linked together.

register: The idea behind the register storage class is that it may
be desirable to have a frequently used variable stored in a high
speed register. The register storage class is a hint to the compiler
that it should, if possible, place this variable in a high speed
register. In the case of Introl-C, the compiler makes most of these
kinds of decisions on its own. Specifying a variable as being of

C.6.6

register storage class is not guaranteed to cause the variable to be
placed in a register. In fact, Introl-C register variables are
identical to auto variables.

static: The scope of a variable declared with a static storage class
is limited to the block, function, or file in which it was defined,
much like an auto variable. Unlike an auto variable, however, the
contents are not discarded when the block containing the variable
terminates. That is, the contents of a static variable remain valid
between invocations of the defining block or function.

typedef: The typedef storage class does not actually assign storage
but is simply a mechanism for associating an identifier with a data
type. It is included here because it is syntactically identical to a
storage class specifier. Once an identifier has been included in a
typedef declaration it may be used in place of a type specifier in
subsequent type declarations.

TYPE
The second attribute that may be specified for an identifier is its
type. Types may be divided into two main classes, the first being
the "fundamental" class of data types and the second the "derived"
class of types. The derived types comprise a conceptually infinite
class of types which may be constructed from combinations of
fundamental types or already defined derived types. The presently
supported fundamental types are:

 char
 int
 float

 where int may be optionally preceded by one of the
 modifiers: short, long, or unsigned.

The derived types are as follows:

 arrays of objects of most types
 functions which return objects of various types
 pointers to objects of any type
 structures of objects of most types
 unions of objects of most types

The fundamental types are discussed individually below.

char: A character variable is defined to be large enough to store
any character from the machine's character set (assumed to be ASCII)
as a positive number. All character variables are implemented as 8
bit bytes. The Introl-C Compiler treats character variables as
unsigned quantities.

int: integers are used to represent integral quantities. Integer
data objects can be declared in various sizes or as signed or
unsigned by use of an optional modifier (or the lack thereof).
integers come in up to three sizes: "short int", "int", and "long

C.6.7

int". Short integers are guaranteed not to be longer than an
integer. Integers are guaranteed to not to be longer than a long
integer. In Introl-C short integers are 16 bit quantities and long
integers are 32 bit quantities. Normal integers are whatever length
is most appropriate for the machine in use. (Refer to the other
Appendices of this manual for further information on integers which
is specific to the target microprocessor.) All signed integers are
represented in 2's complement form. Unsigned integers represent
positive quantities.

float: Floating point numbers are represented in the IEEE standard
floating point format. A floating point variable is allocated 32
bits of storage which is interpreted by floating point functions in
the following way: the most significant bit is interpreted as the
sign of the number; the next 8 bits are interpreted as a biased
exponent; the remaining 23 bits are interpreted as a normalized
mantissa preceded by an assumed bit which is always set to 1.
Floating point numbers cover the range from approximately 8.43 times
10 to the -37th power to 3.37 times 10 to the +38th power. It is
also possible for floats to take on values outside this range. Such
values are used to represent positive and negative infinity (+inf,
-inf), and Not-a-Number (NaN). In the case of NaN the variable will
be encoded in such a way as to contain an error code and an address
which indicates where and under what circumstances the NaN occurred.
Various printing routines will actually print out "+inf" for
positive infinity, "-inf" for negative infinity, and "NaN" for
Not-a-Number. In the case of NaN, two numbers separated by commas
may be printed following the NaN; the first represents an error code
and the second the address which was encoded in the number. (See
printf and atof in the Standard Library volume).

The derived data types are described below.

Arrays: An identifier may represent an array of any type except
function. Notice that an array MAY be of type pointer to function
and indeed this is usually what is meant when one refers to an
"array of functions."

In expressions, array identifiers are converted to a pointer to the
first member of the array. The converted identifier is, of course,
not an lvalue and thus may not be modified as an actual pointer
might. By definition, the expression El[E2) is identical to
*((E1)+(E2)). The rules for adding a pointer to an integer state
that the result is a pointer which is offset from the original
pointer by a number of bytes equal to the integer multiplied by the
size of the object to which the pointer points. Thus if El is an
array or pointer, and E2 is an integer, then both El[E2] and
*((E1)+(E2)) refer to the E2th element of El. Multi-dimensional
arrays are simply implemented as arrays of arrays. That is,
El[E2](E3] is identical to (E1[E2])[E3]. Multi-dimensional arrays
are stored row-wise in memory (the rightmost subscript varies
fastest).

functions: An identifier may represent a function which can be

C.6.8

declared as returning any one of the fundamental types as well as a
pointer to any type. A function identifier may represent two
different things. If it is followed by a set of parentheses (which
may contain a parameter list) it is interpreted as a function call;
otherwise it is interpreted as the address of the function.

pointers: An identifier may represent a pointer to any type. A
pointer to a type may be thought of as a variable which contains the
address of an object of that type. That is, a pointer to integer
contains the address of some variable of type integer. It is
possible for a pointer to point to nothing, in which case it is said
to equal NULL; this is signified by setting the pointer equal to
zero. Only three mathematical operations are defined for pointers. A
pointer may be added to an integer, in which case the result is a
pointer which is offset from the original pointer by a number of
bytes equal to the integer multiplied by the length of the object
pointed to. This has the same effect as specifying the pointer with
the integer as an index (see arrays above). An integer may be
subtracted from a pointer, with an effect identical to adding the
negated integer to the pointer. Thirdly, a pointer may be subtracted
from another pointer, in which case the result is an integer
representing the number of objects separating the objects being
pointed at. This last operation is defined only when both pointers
point to objects in the same array.

structures: An identifier may represent a structure whose elements
may be of any type except "function". (See the note in "Arrays"
above). A structure allows a set of variables of various types to be
grouped under a single name for convenience. The only operations
which can be performed on a structure are (1) to take its address
(using the "&" operator), and (2) to access one of its members.
Functions may not be assigned or copied as a unit nor may they be
passed to or returned from functions (pointers to structures may be
passed to and returned from functions, however). When referencing
structure members through pointers, the construct
(*<Pointer>).<member> is equivalent to <pointer>-><member>, where
<pointer> is an expression which evaluates to "pointer to structure"
and <member> is a member of the structure pointed to.

Introl-C provides separate name spaces for all structure and union
member names, allowing identical member names to be used in
different struct or union declarations with no restrictions. Thus,
two different structures may each have a member with the same name.
Another advantage to having all structure and union member names in
separate name spaces is that the Compiler can do more extensive
type-checking of structure references. To access a member of a
struct or union through a pointer expression, the pointer expression
must be of type pointer to the particular structure or -union in
question. This type checking can be overridden if desired by using a
cast to cast the pointer to the type of the structure to be
accessed.

unions: An identifier may represent an object which can contain any
one of several types of any type except function. (See arrays).

C.6.9

Introl-C provides separate name spaces for all structure and union
member names, allowing identical names to be used in different
struct or union declarations. Thus, two different unions may each
have each have a member with the same name. The Compiler will flag
as an error a reference to a union or structure member which is made
with a pointer which is not of type pointer to the union or
structure referenced. If it is desired to defeat this type-checking,
the pointer in question may be cast as a pointer to the union or
structure to be referenced. (See "structures" above).

DECLARATIONS

Declarations are the mechanism for associating an identifier with a
type and storage class. There are two main types of declarations,
Data Declarations and Function Definitions.

DATA DECLARATIONS
A data declaration consists of an optional storage class specifier,
followed by an optional type modifier, followed by an optional type,
followed by zero or more declarators (each of which may be followed
by an initializer) separated by commas, followed by a semicolon,
";". The storage class specifier may be any of the following:

 auto
 extern
 register
 static
 typedef

A type modifier may be any of the following:

 long
 short
 unsigned

A type may be any of the following:

 char
 int
 float
 struct <identifier> {<member declarations>}
 union <identifier> {<member declarations>}
 <typename>

A declarator may be an identifier, or a declarator enclosed in
parentheses, or a declarator preceded by a star, or a declarator
followed by a set of empty parentheses, or a declarator followed by
a set of brackets which may optionally enclose a constant
expression.

All items are optional except the declarator. If the storage class
is not specified and the declaration is within a function
definition, then auto will be assumed; otherwise extern will be
assumed. Type modifiers may appear only for a type of int, or when

C.6.10

the type is left unspecified. If the type modifier is not specified,
int will be assumed.

The typedef storage class specifier does not reserve storage but is
used to associate an identifier with a data type. It is included
here because, from a syntactical point of view, it is a storage
class specifier.

For structure and union types either the <identifier> or the
(<member declarations>) part may be omitted (but not both). That is,
a structure or union type consists of the following: the keyword
"struct" or "union", followed by an optional identifier, optionally
followed by a set of braces which enclose a list of member
declarations. A member declaration consists of an optional type
specifier followed by zero or more declarators where declarators are
as defined above. The <identifier> part may appear without the
{<member declarations>) part, provided that the same identifier has
previously appeared in a structure definition which included the
(<member declaration>) part.

The type may be a <typename>, where <typename> was a previously
declared identifier in a declarator which appeared in a declaration
having a storage class of "typedef".

INITIALIZERS
As mentioned above it is possible for a declarator to be followed by
an initializer. The initializer is a vehicle by which the programmer
may specify the initial value of a variable. For external and static
variables the value is set once, logically, at compile time. For
automatic variables the value is assigned to the variable on each
entry to the function (ie at run time).

The syntax for the most general use of initializers, as applied to
external or static variables, is as follows: an equal sign,
followed by an initializer-list. The initializer-list may consist of
a constant expression or an open brace, "C", followed by zero or
more initializer-lists separated by commas, followed by a closing
brace, ")". The constant expression is defined below in the
paragraph on "Expressions"..

When the item to be initialized is a scalar, (char, int, long,
float, pointer), the initializer may consist of only a single
constant expression which may, optionally, be enclosed in braces,
"(", ")".

For any item which is an aggregate, such as a structure or array,
the initializer consists of an initializer-list enclosed in braces.
The initial values are applied to each element of the structure or
array in the order in which they appear. If fewer values appear than
there are elements in an array or members in a structure, then the
remaining elements or members are initialized to zero.

This definition may be applied recursively to aggregates of
aggregates (sub-aggregates) so that the values of elements of

C.6.11

sub-arrays and sub-structures may be explicitly defined. The
symantics for subaggregate initialization are as follows:

If the initializer-list begins with a left brace, then the
succeeding initializers, up to the next right brace, apply to the
sub-aggregate. If a right brace is encountered before all the values
of the sub-aggregate are initialized, the succeeding members of the
sub-aggregate are initialized to zero. If the sub-aggregate
initializer-list does not begin with a left brace, then as many
elements from the initializer-list are used as is necessary to
initialize all the members or elements of the sub-aggregate.

It is not permitted to initialize variables of type union.

In the case of an array in which the size is not specified, the
Compiler will set the size of the array to the number of initialized
values specified for it.

In the special case of a character array the initializer may take
the form of a constant string. The array will be initialized such
that each element of the array is set to the value of the
corresponding character in the string constant. The terminating NULL
is also considered part of the initializer and is encoded in the
array. As above, if the size of the array is left unspecified the
size will be the same as that of the NULL terminated string which
initializes it.

The syntax for an initialized automatic variable is slightly
different than for that of an external or static variable. It may
consist of an equal sign, "=", followed by an expression which may,
optionally, be enclosed in braces, "(", and ")". Notice that this
definition allows an arbitrarily complex expression which may
include constants, functions, and previously declared variables. The
expression must evaluate to a scalar or float; it is not permitted
to initialize aggregate (structure or array) automatic variables.

FUNCTION DEFINITIONS
A function definition is the mechanism by which a code segment is
defined. Most programs include a function called "main" which is, by
default, the function executed when the program starts. A function
definition is indicated by an optional storage class specifier,
followed by an optional type modifier, followed by an optional type
specifier, followed by a declarator followed by a set of parentheses
which enclose zero or more identifiers, followed by zero or more
data declarations, followed by a compound statement. The storage
class specifier may be any of the following.

 extern
 static

The type modifier may be any of the following.

 long
 short

C.6.12

 unsigned

The type may be any of the following.

 char
 int
 float
 <typename>

If the storage class is static, then the function will be known only
in the program file in which it was defined; otherwise it will be
known externally. If the storage class is omitted the function
defaults to external. The type modifiers may be used only for
functions whose type specifier is int or unspecified. The type
specifiers in conjunction with the declarator form indicate the type
of the function's return value. The type of the return value may
only be char, int (long, short or unsigned), float, or pointer. If
the type specifier is omitted it defaults to int.

ABSTRACT TYPE DECLARATIONS
There are two cases in which it may be necessary to refer to a data
type without referring to any particular identifier. One of these
cases involves the cast mechanism and the other involves the sizeof
operator. In either case it may be necessary to specify an abstract
type. An abstract type is indicated by an optional type modifier,
followed by a type specifier, followed by an abstract declarator,
where an abstract declarator is defined the same as a normal
declarator above except that no identifier is permitted. That is, an
abstract declarator may be a null sequence of characters, or an
abstract declarator preceded by a star, or an abstract declarator
followed by a set of brackets (which may contain a constant
expression), or an an abstract declarator followed by an empty set
of parentheses, or an abstract declarator enclosed in parentheses.
In the last case the sequence of characters inside the parentheses
may not be null. In the case of a cast, either the type modifier or
the type specifier, but not both, may be omitted. If the type
specifier is omitted int is assumed.

EXPRESSIONS

An expression is any construct which returns a value. The C language
is very general about expressions. Expressions include constants,
strings, identifiers which have been suitably declared, and
expressions enclosed in parentheses. The result of any expression
operation on an expression is also an expression. An expression may
have side effects. This means, for example, that a variable may
become changed in the process of evaluating an expression. This is
typical of function calls but may also occur in some of the
arithmetic expressions, as with the increment operator (x++) where
the variable is incremented after its value is taken.

A string is in all cases treated like an array of characters. A
string is the same syntactically as a character array identifier and
thus is of type pointer to character when used in an expression.

C.6.13

Any expression may be enclosed in parentheses. The effect is to
cause the enclosed expression to be completely evaluated before
operators external to the parentheses are applied. The resultant
type and value are that of the enclosed expression. The fact that an
expression evaluates to an lvalue is not altered by enclosing such
an expression in parentheses.

CONVERSIONS

The conversion of a value from one data type to another may be done
explicitly, by using a cast for example, or may be implicitly
carried out when some operation is performed, as when an integer is
assigned to a float.

IMPLICIT CONVERSIONS
Many conversions are carried out automatically by the Compiler,
particularly in the case of arithmetic expressions. The general
pattern for deciding what will be converted to what in an arithmetic
operation involving two operands is as follows:

 If either operand is of type float the other will be converted to
 float and that will be the resultant type;
 Otherwise if either operand is of type long int the other will be
 converted to long int and that will be the resultant type;
 Otherwise if either operand is of type unsigned int the other
 will be converted to unsigned int and that will be the resultant
 type;
 Otherwise if either operand is of type int the other operand will
 be converted to int and that will be the resultant type;
 Otherwise if either operand is of type short int the other
 operand will be converted to short int and that will be the
 resultant type;
 otherwise both operands must be of type char and that is the
 resultant type.

Notice that character expressions are not always automatically
converted to integer and, in general, when used in arithmetic
expressions, a character expression is converted to the type of the
other operand. Thus, when two expressions of type character are
added, the result will be of type character. If the result cannot
fit in a character size space an overflow condition will occur.
Character expressions are, however, always converted to integer when
used as function parameters.

The following conventions apply to the results of various
conversions. Note that Integral includes all types other than float.

Float to integral Type: The conversion from float to an integral
type is as follows. The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0), and this
is the resultant value if the truncated value is within the range
which can be represented by the specified integral type. If the
truncated value is larger than that which can be represented by the

C.6.14

specified integral type, then the result is undefined.

Integral to Float Type: The conversion of an integral expression to
type float results in the value of the integral expression as
represented in floating point format. If the integral expression has
more bits representing its value than the floating point allows in
its mantissa, there will be some loss of precision when large
numbers are converted. Presently this happens only when converting
long integers to float.

Integral to Integral Type: if the bit length of the source
expression type is longer than the bit length of the resultant type,
then the only conversion done is to discard the excess high order
bits. When the bit length of the destination type is longer than the
bit length of the source expression type, excess high order bits
will be filled with either the sign bit of the source expression or
zeros. If the source expression is of unsigned type then high order
bits are zero filled; otherwise they are sign filled. If both source
expression type and destination type are the same length then no
actual change in the bit pattern takes place.

EXPLICIT CONVERSIONS
Sometimes it is desired to force a conversion explicitly. This is
called casting an expression from one type to another, and the
mechanism by which this is done is called a cast. A cast is
indicated by an expression preceded by a set of parentheses which
enclose a type specifier followed by an abstract declarator (as
described in the paragraph on abstract data declarations under DATA
CONVENTIONS).

LVALUES
There is a distinction made between expressions which evaluate to
constant values and those which evaluate to variable values. An
expression which evaluates to a variable value is called an lvalue.
Lvalues may be changed, whereas constant values may not. It makes no
sense, for example, to place a constant value (a non-lvalue) to the
left of an assignment operator because no new value may be assigned
to it. Any attempt to do this will be flagged as an error by the
Compiler. In fact, the "l" in the term "lvalue" is intended as a
reminder that this value may be placed to the left of an assignment
operator.

CONSTANT EXPRESSIONS
In certain cases Introl-C may require the use of a constant
expression. The set of constant expressions is a subset of the set
of regular expressions. Constant expressions are expressions which
can be evaluated to a scalar at compile time and thus may contain no
variables or floating point values. Likewise a constant expression
may contain no operators which change the value of any of their
operands or have variable results. The legal constant operators are
the unary operators:
! ~ - sizeof
the binary operators:
* / % + - << >> < <= > >= == != & ^ | && ||

C.6.15

and the trinary operator:
?:

In the case of a constant expression used as an initializer, the
expression may alternatively consist of a floating point constant
(possibly preceded by a negative sign), or an expression which
evaluates to a constant pointer.

A constant pointer is one whose value is known at compile time. This
includes function names, static and external array names, static and
external variables which are preceded by the addressing operator,
"&", or any of the above offset by a constant expression. The
addresses of automatic variables are not permitted in such an
expression because their location is dynamic (not known at compile
time).

OPERATORS
The following is a list of operators in the order of their priority.
Also listed is the order of evaluation of operators when two or more
operators of the same priority appear in an expression.

 OPERATOR EVALUATED

() [] -> . left to right
! ~ ++ -- - (<type>) * & sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= >>= <<= &= ^= |= right to left
' left to right

The operators are described below in the order of their priorities.

ADDRESSING OPERATORS
Addressing operators evaluate left to right.

Function Operator () The function operator is indicated by a pair of
parentheses preceded by an expression which evaluates to type
"function". There may optionally be a list of expressions separated
by commas within the parentheses. The effect is to execute the
function named. The result of the function operator is an expression
which has a value of whatever type has been defined as the return
type of the function. The expressions within the parentheses may be
of any type and any number; no checking is done to verify that the
types and number of the expressions within the parentheses in the

C.6.16

function call agree with the types and number specified in the
function declaration. Functions may be called recursively.

Array operator [] The array operator is indicated by an expression
followed by a pair of brackets which contain an expression. One of
the expressions must evaluate to type pointer while the other must
evaluate to an integral type. It is usually considered a good
programming practice to make the first expression (the one outside
the brackets) the one which evaluates to type pointer. This is not
of necessity, however, due to the fact that el[e2] is defined to be
identical to *((el)+(e2)). Notice that addition is a commutative
operator and, thus, so is the array operator. The result of an array
operation is an expression which is of the type pointed to by the
pointer expression. The array operator returns the value of the
object that is pointed to when the integral value is multiplied by
the size of the type pointed to and then added to value of the
pointer. The effect is to return the value of the object which is
displaced the integral number from the beginning of an array pointed
to by the pointer.

Structure Member Operator. The structure member operator is
indicated by an expression which evaluates to type structure,
followed by a period, ".", followed by an identifier; as in "a.b".
In Introl-C the expression must evaluate to a structure type which
has the identifier as a legal member; otherwise, the Compiler will
generate an error message. The result is an expression whose type
and value is that of the indicated member in the structure.

Structure Member Pointer Operator -> The structure member pointer
operator is indicated by an expression which evaluates to type
pointer to structure followed by a dash-greater-than character
combination, "->", followed by an identifier; as in "a->b" (there
may be no white space between the dash and the greater than sign).
In Introl-C the type of the structure pointed to by the expression
must have the identifier as a legal member. The result is an
expression whose type and value is that of the indicated member in
the structure pointed to.

UNARY OPERATORS
Unary operators evaluate right to left.

Logical Not Operator ! The logical Not operator is indicated by an
exclamation mark, "!", followed by an expression. The result is an
expression whose type is character and whose value is 0 (zero) if
the original expression was non-zero and 1 (one) otherwise.

Bitwise Not Operator ~ The bitwise not operator is indicated by a
tilde, "~", followed by an expression. The result is an expression
with a value equal to the one's complement of the original
expression and with the same type as the original expression. The
bitwise Not operator may not be applied to types pointer and float.

Increment Operator ++ The increment operator has two forms. It is
indicated by a double plus (two successive plus signs with no

C.6.17

intervening white space, "++") either immediately preceding or
following an expression. The expression must evaluate to an lvalue
(that is, a variable, something which can be written to). When the
double plus precedes a variable, the variable is incremented by one
and the resultant expression is the new value of the variable. When
the double plus follows a variable, the variable is also incremented
but the resultant expression is the value the variable had before it
was incremented. When the increment operator is applied to a
pointer, the pointer is incremented by the length of the object to
which it points; thus it will point to the next object in sequence.

Decrement Operator -- The decrement operator (like the increment
operator) has two forms. It is indicated by a double minus (two
successive minus signs with no intervening white space, "--") either
immediately preceding or following an expression. The expression
must evaluate to an lvalue (that is, a variable, something which can
be written to). When the double minus precedes the variable the
variable is decremented by one and the resultant expression is the
new value of the variable. When the double minus follows the
variable, the variable is also decremented but the resultant
expression is the value the variable had before it was decremented.
When the decrement operator is applied to a pointer the pointer is
decremented by the length of the object to which it points; thus it
will point to the previous object in sequence.

Unary Minus Operator - The unary minus operator is indicated by a
minus sign, "-", followed by an expression. The resultant expression
is the algebraic negation of the original expression. The action of
the unary minus is undefined when used on types unsigned integer and
character (which is also unsigned).

Cast Operator (type) The cast operator is indicated by a data type
name in parentheses, followed by an expression. A data type name is
like a data type declaration but without the object to which it
would normally refer. For example, to cast some expression to type
"function returning pointer to character", one would type "(char
*())El" (where El is an expression). The expression may be of any
type. The resultant expression has the type specified by the cast.

Indirection Operator * The indirection operator is indicated by a
star, "*", followed by an expression which must be of type pointer.
The resultant expression has the type and value of the object to
which the pointer points.

Address Operator & The address operator is indicated by an
ampersand, "&", followed by an lvalue. The resultant expression is a
pointer to the object indicated by the lvalue.

Size of Operator sizeof The size of operator is indicated by the
keyword, "sizeof", followed by either a type name enclosed in
parentheses, or an expression. The result is an expression of type
integer whose value is the size, in bytes, of an object of the type
indicated.

C.6.18

MULTIPLICATIVE OPERATORS
Multiplicative operators evaluate left to right.

Multiplication Operator * The multiplication operator is indicated
by an expression, followed by a star, "*", followed by an
expression. The result is an expression whose value is that of the
algebraic multiplication of the two expressions.

Division operator / The division operator is indicated by an
expression, followed by a slash, "/", followed by an expression. The
result is an expression whose value is that of the algebraic
division of the first expression by the second. If both of the
expressions are of integral type then the result will also be of
integral type and any fractional result will be discarded.

Modulo Operator % The modulo operator is indicated by an expression,
followed by a percent symbol, "%", followed by an expression. The
result is an expression whose value is the first expression modulo
the second expression. That is, the first expression is integer
divided by the second expression with the result equal to the
remainder. Both expressions must be of integral type.

ADDITIVE OPERATORS
Additive operators evaluate left to right.

Addition Operator + The addition operator is indicated by an
expression, followed by a plus symbol, "+", followed by an
expression. The result is an expression whose value is the algebraic
sum of the expressions.

Subtraction Operator - The subtraction operator is indicated by an
expression, followed by a minus sign, "-", followed by an
expression. The result is an expression whose value is the algebraic
result of the second expression subtracted from the first
expression.

SHIFT OPERATORS
Shift operators evaluate left to right.

Left Shift Operator << The left shift operator is indicated by an
expression, followed by a double less-than symbol, "<<", followed by
an expression. The result is an expression whose value is that of
the first expression after having been bitwise left shifted by the
number of bits indicated by the second expression. Zeros are shifted
into the low order bit positions. Both expressions must be of
integral type.

Right Shift Operator >> The right shift operator is indicated by an
expression, followed by a double greater-than symbol, ">>", followed
by an expression. The result is an expression whose value is that of
the first expression after having been bitwise right shifted by the
number of bits indicated by the second expression. If the first
expression is of signed type, its sign bit will be shifted into the
high order bit positions; otherwise zeros will be shifted into the

C.6.19

high order bit positions. Both expressions must be of integral type.

RELATIONAL OPERATORS
Relational operators evaluate left to right.

Less-Than Operator < The less-than operator is indicated by an
expression, followed by a less-than symbol, "<", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
less than the second expression, and a zero (false) value otherwise.

Less-Than Equal Operator <= The less-than equal operator is
indicated by an expression, followed by a less-than equal character
combination, "<=", followed by an expression. There may be no white
space between the less-than symbol and the equal symbol. The result
is an expression of type character which has a non-zero (true) value
if the first expression is algebraically less than or equal to the
second expression, and a zero (false) value otherwise.

Greater-Than Operator > The greater-than operator is indicated by an
expression, followed by a greater than symbol, ">", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if the first expression is algebraically
greater than the second expression, and a zero (false) value
otherwise.

Greater-Than Equal operator >= The greater-than equal operator is
indicated by an expression, followed by a greater-than equal
character combination, ">=", followed by an expression. There may be
no white space between the greater-than symbol and the equal symbol.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically greater than
or equal to the second expression, and a zero (false) value
otherwise.

EQUALITY OPERATORS
Equality operators evaluate left to right.

Equal To Operator == The equal-to operator is indicated by an
expression, followed by a double equal sign, "==", followed by an
expression. There may be no white space between the two equal signs.
The result is an expression of type character which has a non-zero
(true) value if the first expression is algebraically equal to the
second expression, and a zero (false) value otherwise.

Not Equal Operator != The not-equal operator is indicated by an
expression, followed by an exclamation mark equal character
combination, "!=", followed by an expression. There may be no white
space between the exclamation mark and the equal sign. The result is
an expression of type character which has a non-zero (true) value if
the first expression is algebraically unequal to the second
expression and a zero (false) value otherwise.

C.6.20

BITWISE AND
The bitwise And operator evaluates left to right.

Bitwise And Operator & The bitwise And operator is indicated by an
expression, followed by an ampersand, "&", followed by an
expression. The result is an expression whose value is the bitwise
And of the two expressions. Both expressions must be of integral
type.

BITWISE EXCLUSIVE OR
The bitwise exclusive Or operator evaluates left to right.

Bitwise Exclusive Or operator - The bitwise exclusive or operator is
indicated by an expression, followed by a caret, "-", followed by an
expression. The result is an expression whose value is the bitwise
exclusive Or of the two expressions. Both expressions must be of
integral type.

BITWISE OR
The bitwise Or operator evaluates left to right.

Bitwise Or Operator | The bitwise Or operator is indicated by an
expression, followed by a vertical bar, "|", followed by an
expression. The result is an expression whose value is the bitwise
Or of the two expressions. Both expressions must be of integral
type.

LOGICAL AND
The logical And operator evaluates left to right.

Logical And operator && The logical And operator is indicated by an
expression, followed by a double ampersand, "&&", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if both expressions had non-zero values, and
a zero (false) value otherwise. All Logical-And expressions are
evaluated in short circuit mode. That is, the expression is
evaluated left to right and, if the first expression has a zero
value, then the second expression is not evaluated.

LOGICAL OR
The logical Or operator evaluates left to right.

Logical Or Operator || The logical or operator is indicated by an
expression, followed by double vertical bars, "||", followed by an
expression. The result is an expression of type character which has
a non-zero (true) value if either of the expressions has a non-zero
value, and a zero (false) value otherwise. All Logical-Or
expressions are evaluated in short circuit mode. That is, the
expression is evaluated left to right and, if the first expression
has a non-zero value, then the second expression is not evaluated.

C.6.21

CONDITIONAL EXPRESSION
The conditional expression evaluates right to left.

Conditional operator ?: The conditional expression operator, a
trinary operator, is indicated by an expression, followed by a
question mark, "?", followed by an expression, followed by a colon,
":", followed by an expression. If the first expression evaluates to
a non-zero value, the second expression is evaluated; otherwise the
third expression is evaluated. If the second and third expressions
are of different type, the usual arithmetic conversion conventions
are applied to make the types identical. The resultant expression
has the same type and value as the evaluated expression.

ASSIGNMENT OPERATORS
Assignment operators evaluate right to left.

Assignment Operator = The assignment operator is indicated by an
lvalue, followed by an equal sign, "=", followed by an expression.
The lvalue's old value will be replaced by the value of the
expression. The result is an expression with a type and value the
same as that of the lvalue.

Update Assignment 0perator <binary operator >= The update assignment
operator is indicated by an lvalue, followed by a binary
operator-equal sign character combination (for example +=, -=, *=,
/=, %=, >>=, <<=, &=, ^=, or |=), followed by an expression. There
may be no white space between the binary operator and the equal
sign. The effect of
 <lvalue> op= <expression>
is identical to
 <lvalue> = <lvalue> op <expression>
except that the lvalue is evaluated only once. The result is an
expression with the same value and type as that of the lvalue.

COMMA
The comma operator evaluates left to right.

Comma Operator , The comma operator is indicated by an expression,
followed by a comma, ",", followed by an expression. Each expression
is evaluated from left to right. The resultant expression has the
type and value of the second expression.

STATEMENTS

Statements include the set of all expressions along with various
constructs which control program flow. Statements are executed
sequentially unless the program flow has been altered by one of the
program flow control statements.

EXPRESSION STATEMENT
Any expression may be used as a statement if it is terminated by a
semicolon. The resultant value of the expression has no effect.
Presumably the expression will have some side effect, such as
altering a memory location as is done in an assignment expression.

C.6.22

An expression statement which has no side effects is flagged as an
error by the Compiler.

COMPOUND STATEMENT
A compound statement, also called a block, consists of a left brace,
"(", followed by zero or more data declarations, followed by zero or
more statements, followed by a right brace, ")". A block has the
effect of "bracketing" a group of statements so that they become,
for syntactical purposes, a single statement. Thus the compound
statement may be used anywhere any other statement may be used. All
data declared inside the block is local to the block unless
specified as being external.

CONDITIONAL STATEMENT
The conditional statement has two forms. One form is the following:
the keyword "if", followed by a set of parentheses containing an
expression, followed by a statement. The expression is evaluated
and, if its resultant value is non-zero, then the statement will be
executed; otherwise it will not be executed. The other form of the
conditional statement consists of the keyword "if", followed by a
set of parentheses containing an expression, followed by a
statement, followed by the keyword "else", followed by a statement.
The expression is evaluated and, if its resultant value is non-zero,
then the first statement is executed; otherwise the second statement
is executed.

WHILE STATEMENT
The while statement is indicated by the keyword "while", followed by
a set of parentheses containing an expression, followed by a
statement. The expression will be evaluated repeatedly until it
evaluates to a zero value with the statement being executed after
each non-zero evaluation of the expression. If the expression
evaluates to zero initially, then the statement will not be executed
at all.

DO STATEMENT
The do statement is indicated by the keyword "do", followed by a
statement, followed by the keyword "while", followed by a set of
parentheses containing an expression. The statement is executed
repeatedly, with the expression being evaluated after each execution
of the statement, until the expression evaluates to zero. The
statement is always executed at least once.

FOR STATEMENT
The for statement is indicated by the keyword "for", followed by an
open paren, "(", followed by an optional expression, followed by a
semicolon, ";", followed by an optional expression, followed by a
semicolon, ";", followed by an optional expression, followed by a
close paren, ")", followed by a statement. The first expression will
be evaluated exactly once. The second expression will be evaluated
repeatedly until it evaluates to a zero value, with the statement
being executed and the third expression being evaluated after each
non-zero evaluation of the second expression. Notice that all three
of the expressions are optional. If the second expression is omitted

C.6.23

it will be assumed to be an expression which always evaluates to a
1, thus making the for loop execute forever. The effect of omitting
the first or the third expression is simply that there will be
nothing to evaluate in their respective positions.

SWITCH STATEMENT
The switch statement is indicated by the keyword "switch", followed
by an expression enclosed in parentheses, followed by a statement.
The expression is evaluated and cast to type integer. The resultant
value is then matched against any case labels in the statement
portion of the switch. If a match is found, execution will be
resumed at the location where the case label was defined. If no
match is found, but there is a default prefix in the statement
portion of the switch statement, then execution will continue at the
location following the default prefix; otherwise no part of the
statement portion of the switch will be executed.

CASE LABEL STATEMENT
The case label may only appear in the statement portion of a switch
statement. It is indicated by the keyword "case", followed by a
constant expression, followed by a colon ":", followed by a
statement. Its effect is to mark the statement as a possible entry
point in a switch statement.

DEFAULT STATEMENT
The default statement may only appear in the statement portion of a
switch statement. It is indicated by the keyword "default", followed
by a colon, ":", followed by a statement. Its effect is to mark the
statement as the default entry point in a switch statement. This
entry is taken when none of the case labels matches the expression
in the switch statement. The default statement may appear no more
than once in any given switch statement.

BREAK STATEMENT
The break statement is indicated by the keyword "break", followed by
a semicolon, ";". The break statement causes termination of the
smallest enclosing while, do, for, or switch statement. Control
passes to the statement following the terminated statement.

CONTINUE STATEMENT
The continue statement is indicated by the keyword "continue",
followed by a semicolon, ";". The continue statement is permitted
only in while, do, and for statements. In each of these statements
the continue statement causes immediate completion of the statement
portion of the above mentioned looping statements. The effect is
that the current iteration of the looping statement terminates and
execution continues at the point in the looping statement which is
normally executed when the loop completes an iteration.

RETURN STATEMENT
The return statement is indicated by the keyword "return",
optionally followed by an expression, followed by a semicolon, ";".
The return statement causes a function to return control to its
caller. If the optional expression is included, it will be evaluated

C.6.24

and its value will be the return value of the function; otherwise
the function's return value is undefined. The return statement is
optional; there is an implicit "return" statement at the end of
every function body.

GOTO STATEMENT
The goto statement is indicated by the keyword "goto", followed by
an identifier followed by a semicolon, ";", where the identifier is
a label appearing on a label statement which exists in the same
function as the goto statement. The goto statement causes control to
be transferred to the statement marked by the label identifier. The
target label must appear in the same function as the goto.

LABEL STATEMENT
The label statement is indicated by an identifier, followed by a
colon, ":", followed by a statement. Its effect is to mark a
statement as a possible destination for a goto statement.

NULL STATEMENT
The null statement is indicated by a lone semicolon, ";". It has no
effect except to take up the place of a statement. It may be placed
anywhere a statement is permitted.

C.6.25

C.6.26

APPENDICES

This section contains miscellaneous reference information which may
be useful to the programmer.

 Appendix A Introl-C / Standard C C.A.1

 Appendix B Data Type Conversions C.B.1

 Appendix C 6809-Specific Aspects of the Compiler C.C.1

1.1

1.2

APPENDIX A

INTROL-C / STANDARD C

The following differences exist between Introl-C and "standard C" as
it is defined in the Kernighan and Ritchie book, "The C Programming
Language".

OMMISSIONS

1) The current release of Introl-C does not support fields.

2) The current release of introl-C does not support the double data
type.

3) The current release of Introl-C does not support the #line and
#if preprocessor directives (all other directives, including #ifdef
and #ifndef, are supported, however).

EXTENSIONS

4) Nesting of comments is permitted in Introl-C. Thus large sections
of code may be "commented out" by simply bracketing the code segment
with /* and */.

5) Introl-C provides separate name spaces for all structure and
union member names, allowing the use of identical names in different
struct and union declarations.

6) Introl-C does not permit the use of the obsolete
assignment-update operator in which the operator follows the equal
sign. Thus x=-l is not identical to x-=l in Introl-C as it may be in
some other implementations of C.

7) Introl-C permits symbols to up to 90 characters in length.

C.A.1

C.A.2

APPENDIX B

DATA TYPE CONVERSIONS

The following describes the result of all conversions, implicit or
otherwise.

char to float: The conversion of a character to type float results
in the value of the character being represented in floating point
format. Characters are unsigned quantities.

char to int: Characters are converted to integers by padding zeros
on the left. In present versions of introl-C characters are
unsigned.

char to long int: Characters are converted to long integers by
padding zeros on the left.

char to short int: Characters are converted to short by padding
zeros on the left.

char to unsigned int: Characters are converted to unsigned by
padding zeros on the left.

char to pointer: Characters are converted to pointer by padding
zeros on the left.

float to char: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a character. If the value is larger than that which
can be represented by a character, then the result is the maximum
value possible for a character. If the value is smaller than that
which can be represented by a character, the result is set to the
minimum value possible for a character.

float to int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a signed integer. If the value is larger than that
which can be represented by an integer, then the result is the
maximum value possible for an integer. If the value is smaller than
that which can be represented by an integer, the result is set to
the minimum value possible for an integer.

float to long int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a long integer. If the value is larger than that
which can be represented by a long integer, then the result is the
maximum value possible for a long integer. If the value is smaller
than that which can be represented by a long integer, the result is
set to the minimum value possible for a long integer.

C.B.1

float to short int: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a short integer. If the value is larger than that
which can be represented by a short integer, then the result is the
maximum value possible for a short integer. If the value is smaller
than that which can be represented by a short integer, the result is
set to the minimum value possible for a short integer.

float to unsigned int: The fractional part of the float is truncated
to produce an integral value (truncation is always toward 0). This
is the resultant value if the value is within the range which can be
represented by an unsigned integer. If the value is larger than that
which can be represented by an unsigned integer, then the result is
the maximum value possible for an unsigned integer. If the value is
smaller than that which can be represented by an unsigned integer
the result is set to the minimum value possible for an unsigned
integer.

float to pointer: The fractional part of the float is truncated to
produce an integral value (truncation is always toward 0). This is
the resultant value if the value is within the range which can be
represented by a pointer. If the value is larger than that which can
be represented by a pointer, then the result is the maximum value
possible for a pointer. If the value is smaller than that which can
be represented by a pointer, the result is set to the minimum value
possible for a pointer.

int to char: Integers are converted to characters by truncating the
excess high order bits.

int to float: The conversion of an integer to type float results in
the value of the integer represented in a floating point format.

int to long int: Integers are converted to long integers by sign
extension.

int to short int: Integers are converted to short integers by
truncating any excess high order bits.

int to unsigned int: The conversion from integer to unsigned integer
is conceptual and no actual change in the bit pattern takes place.
Thus the value of a positive integer converted to unsigned integer
does not change while the value of a negative integer appears as a
large unsigned integer.

int to pointer: The conversion from integer to pointer is conceptual
and no actual change in the bit pattern takes place.

long int to char: Long integers are converted to type character by
truncating the excess high order bits.

long int to float: The conversion of a long integer to type float
results in the value of the long integer represented in floating

C.B.2

point format. There may be some loss of precision for large values
because the number of bits used to represent the long (31 not
including sign) is larger than the number of bits used to represent
the mantissa of the float (24).

long int to int: Long integers are converted to type integer by
truncating any excess high order bits.

long int to short int: Long integers are converted to short integers
by truncating the excess high order bits.

long int to unsigned int: Long integers are converted to unsigned
integers by truncating the excess high order bits.

long int to pointer: Long integers are converted to pointer by
truncating the excess high order bits.

short int to char: Short integers are converted to character by
truncating any excess high order bits.

short int to float: The conversion of a short integer to type float
results in the value of the short represented in floating point
format.

short int to int: When short integers are converted to type integer,
any excess high order bit positions in the result are filled by sign
extending the short integer.

short int to long int: When short integers are converted to type
long integer, any excess high order bit positions in the result are
filled by sign extending the short integer.

short int to unsigned int: When short integers are converted to type
unsigned integer, any excess high order bit positions in the result
are filled by sign extending the short integer.

short int to pointer: When short integers are converted to pointer,
any excess high order bit positions in the result are filled by sign
extending the short integer.

unsigned int to char: Unsigned integers are converted to type
character by truncating the excess high order bits.

unsigned int to float: The conversion of an unsigned integer to type
float results in the value of the unsigned integer represented in
floating point format.

unsigned int to int: The conversion from unsigned integer to integer
is conceptual and no actual change in the bit pattern takes place.
Thus, when an unsigned integer with a value greater than the maximum
integer value is converted to an integer, the result appears as a
negative number.

C.B.3

unsigned int to long int: Unsigned integers are converted to long by
padding zeros on the left.

unsigned int to short int: Unsigned integers are converted to type
short integers by truncating any excess high order bits.

unsigned int to pointer: The conversion from unsigned to pointer is
conceptual and no actual change in the bit pattern takes place.

pointer to char: Pointers are converted to type character by
truncating the high order bits.

pointer to float: The conversion of a pointer to type float results
in the value of the pointer as represented in floating point format.
The value of a pointer is interpreted as an unsigned quantity.

pointer to int: The conversion from pointer to integer is conceptual
and no actual change in the bit pattern takes place.

pointer to long int: Pointers are converted to type long integer by
padding the high order bits with zeros.

pointer to short int: Pointers are converted to short integer by
truncating any excess high order bits.

pointer to unsigned int: The conversion from pointer to unsigned
integer is conceptual and no actual change in the bit pattern takes
place.

C.B.4

APPENDIX C

INTROL-C/6809 COMPILER
DATA, REGISTER USAGE.

AND PARAMETER PASSING CONVENTIONS

DATA

The value of char data is represented in an eight bit (one byte)
memory location. A char is an unsigned small integer that can
contain a value from zero to 255.

Int variables are contained in two bytes (16 bits) and represent a
two's complement value that may be in the range -32768 to +32767.

All signed integers are represented in two's complement form.

Short is a synonym for int in this implementation.

Unsigned (or unsigned int) variables are contained in two bytes (16
bits) and may contain values in the range 0 to 65535.

Long (or long int) variables are contained in four bytes (32 bits)
and contain values in the range -2147483648 to 2147483647.

Floats are contained in four bytes (32 bits) and contain values as
defined by the IEEE standard for 32 bit floating point numbers. (See
also the discussion on floats in the "Definition of Introl-C"
section of this manual.)

A structure has a size exactly equal to the sum of the sizes of its
parts. There are no unused spaces in structures. For example the
structure declaration:

 struct
 {
 int a;
 char b;
 unsigned d;
 char e[2];
 long f;
 float g;
 } f;

will create the following memory allocation (assume the byte numbers
represent offsets from the beginning of structure f)

 Byte Contents
 0,1 int value of member a. (Byte 0
 is the high byte.)
 2 Char value of member b.
 3,4 Unsigned value of member d.
 5 e[0]
 6 e[1]

C.C.l

 7,8, 9, 10 Long int value of member f.
 (Byte 7 is the high byte.)
 11,12,13,14 The first, most significant bit of
 the first byte is the sign of the
 float. The next seven bits of the
 first byte and the first bit of the
 next byte comprise the biased
 exponent. The remaining 23 bits
 comprise the mantissa and make up
 the remainder of the second byte as
 well as the next two bytes.

A union is the size of its largest member. All unions pack towards
the left. This means that a char variable coexisting with an int in
a union will actually be allocated the byte representing the high
byte of the integer's value.

An array has the size of one of its elements multiplied by the given
dimension of the array. An array declaration such as:

 char a[10];

defines "a" to be a character array with ten elements and therefore
ten bytes long.

REGISTER USAGE

The 6809 has two eight bit accumulators (usable as a single sixteen
bit register), three general purpose index registers, a hardware
stack pointer and a program instruction counter. These registers are
allocated by the Compiler as follows.

The B accumulator is used as the char accumulator for arithmetic
expressions that involve char values. The D register (A:B) is used
as the int and unsigned accumulator. A programmer is free to destroy
these registers in a user written assembly language function. The B
register is used to return character data from a function; the D
register is used to return int, or unsigned values; and both the U
and D registers are used to return long int. or float, with U
containing the most significant half of the number.

The X, Y, and U registers are used in addressing operands. The
contents of the X and U register may be destroyed by an assembly
language routine without adverse effect. The Y register may also be
modified, but only if the user is not generating position
independent code. When generating position independent code, the
Compiler assumes the Y register will in all cases contain the
address of the beginning of its external and static data area. In
such case, a program initialization routine must initialize the Y
register before the first call to "main()".

The hardware stack pointer (SP) should be preserved through a
function. The SP points to an area of read/write memory that has
several uses: (1) The stack area is used to preserve a record of the

C.C.2

execution history of the program, so that a function always "knows"
who called and can return to the same place; (2) the stack is used
to save the state of the processor in the event of an interrupt; (3)
the stack is used to pass parameters to a function: and (4) the
stack is used to allocate local variable space for a function. These
first two functions of the stack are determined by the 6809 hardware
and can be pursued further, if desired, by obtaining a reference
book on the microprocessor. The third and fourth functions of the
stack (parameter passing and local variable allocation) are
described in the following paragraphs.

PARAMETER PASSING CONVENTIONS

When a function is called in this implementation the second through
the last parameters are pushed on the stack in reverse order (last
parameter first). The first parameter is loaded into the D
accumulator. If the first parameter is a long or float, the high
order word is loaded into the U register. Char values are converted
to int when passed as a parameter. Either the jump to subroutine
(JSR) or the long branch to subroutine (LBSR) instruction is then
used to call the desired function. After the function returns, the
area in the stack used for parameters is freed. The return value of
the function is assumed to be in the U and D registers, where U is
assumed to hold the most significant 16 bits of a returned long or
float value while the D register holds the least significant 16
bits. Integer-sized data is returned in the D register. Character
data is returned in the low order 8 bits of the D register (the B
register). When returning character type data, it is a good idea to
clear the upper 8 bits of the D register (the A register).

A function call such as:

 f(a,b,1+2)

would generate the 6809 code with the following meaning:

 push (the value of 1+2)
 push (the value of variable b)
 load (the value of variable a)
 LBSR f
 deallocate 4 bytes from the SP (total pushed
 parameter size)

When the function is entered, the stack frame looks like this:

 Stack Contents Offset
 other data on the stack SP+6
 the value of 1+2 SP+4
 the value of variable b SP+2
 SP -> return address SP+0

 D = value of variable a

C.C.3

LOCAL DATA

If a function needs auto storage locations it allocates them below
the return address of the stack frame described above. Suppose the
function f() has the following declaration:

 f(x,y,z)
 int x,y,z;
 {
 char a;
 int b;
 .
 .
 .

The function would expect its parameters to be in the stack frame as
described above. The function will often save parameter 1 (passed in
the D register) in the stack just under the return address. After
entering the function, the stack pointer would be modified to allow
the storage of a and b below the return address of the stack frame.
The new stack frame would look like this:

 Stack Contents offset
 other data on the stack SP+11 ...
 the value of parameter z SP+9
 the value of parameter y SP+7
 return address SP+5
 the value of parameter x SP+3
 variable b SP+l
 SP -> variable a SP+0

Note that char variables use only one byte as auto variables. The
only time they are automatically given two bytes is when passed as
parameters. The function has the responsibility of "cleaning up"
after itself by removing the allocation of variables a and b from
the stack. Allocating memory from the stack is accomplished by
subtracting the desired number of bytes from the SP and using the
area between the new SP and the old SP. Deallocating memory from the
stack is the opposite: add the number of bytes to deallocate to the
SP.

There are two important things to remember about the stack pointer.
The first is that it must always point to the return address of the
caller when the function is complete. The second is that the stack
pointer must always point to an area of memory large enough to hold
all the auto variables of a series of functions at their deepest
nesting level, allow room for the parameters and return addresses,
leave space for any temporary variables that might be used on the
stack, and allow room for saving the system state if the programs
are to be run in an interrupt environment. In other words, the stack
is very busy so make the stack area big enough!

C.C.4

 INDEX

abstract declarators 6.13 #endif directive 6.4
addition operator 6.19 equ 5.9
additive operators 6.19 equal-to operator 6.20
address operator 6.18 equality operators 6.20
addressing operators 6.16 err 5.10
and operator, bitwise 6.21 error messages, compiler 4.7
and operator, logical 6.21 escape characters 6.2
array operator 6.17 exclusive or operator, bitwise 6.21
array type 6.8 explicit conversions 6.15
array, multi-dimensional 6.8 export 5.10
assembly language text file 3.2 expression statement 6.23
assignment operator 6.23 expression, conditional 6.22
assignment operator, update 6.23 expressions 6.13
assignment operators 6.23 expressions, constant 6.15
auto variables 6.6 extern variables 6.5
backspace 6.2 fcb 5.10
binary operators 6.15 fcc 5.11
bitwise and operator 6.21 fdb 5.11
bitwise exclusive or operator 6.21 file, assembly language text 3.2
bitwise Not operator 6.17 file, relocatable object 3.2
bitwise or operator 6.21 float to integral conversion 6.14
blanks 6.1 floating point constant 6.3
break statement 6.25 floating point type 6.8
carr-iage return 6.2 for statement 6.24
case label statement 6.25 form feed 6.2
cast 6.13 function definition 6.12
cast operator 6.18 function operator 6.16
Character constants 6.2 function type 6.8
character type 6.7 functions 6.8
comma operator 6.23 goto statement 6.26
comment nesting 6.1 greater-than operator 6.20
comments 6.1 greater-than-equal operator 6.20
compiler 4.1 hexadecimal constants 6.2
compiler error messages 4.7 identifier length 6.1
compiler options 4.2 identifiers 6.1
compound statement 6.24 #ifdef directive 6.4
conditional expression 6.22 #ifndef directive 6.5
conditional operator 6.23 implicit conversions 6.14
constant expressions 6.15 import 5.12
constant, floating point 6.3 #include directive 6.5
constants 6.2 increment operator 6.17
constants, character 6.2 indirection operator 6.18
constants, hexadecimal 6.2 +inf 6.8
constants, integer 6.2 initializers 6.11
constants, long integer 6.2 integer constants, long 6.2
continue statement 6.25 integer type 6.7
conversion, float to integral 6.14 integer type, long 6.7
conversion, integral to float 6.15 integer type, short 6.7
conversion, integral to integral 6.15 integer type, unsigned 6.7
conversions 6.14 integral to float conversion 6.15
conversions, explicit 6.15 integral to integral conversion 6.15
conversions, implicit 6.14 keywords 6.1
data conventions 6.6 label Statement 6.26
data declarations 6.10 label statement, case 6.25
declarations 6.10 left shift operator 6.19
declarations, data 6.10 less-than operator 6.20
declarators, abstract 6.13 less-than-equal operator 6.20
decrement operator 6.18 lexical conventions 6.1
default statement 6.25 lib 5.12
#define directive 6.3 list 5.12
definition of Introl-C 6.1 loc 5.13
definition, function 6.12 logical and operator 6.21
directive, #define 6.3 logical not operator 6.17
directive, #else 6.4 logical or operator 6.21
directive, #endif 6.4 long integer constants 6.2
directive, #ifdef 6.4 long integer type 6.7
directive, #ifndef 6.5 lvalues 6.15
directive, #include 6.5 macro, preprocessor 6.4
division operator 6.19 member name spaces 6.9
do statement 6.24 modulo operator 6.19
#else directive 6.4 multidimensional array 6.8

I.1

multiplication operator 6.19 relational operators 6.20
multiplicative operators 6.19 relocatable object file 3.2
NaN 6.8 return statement 6.25
newline 6.2 right shift operator 6.19
newlines 6.1 rmb 5.14
nolist 5.13 scope, member names 6.9
not-equal operator 6.20 set 5.14
null statement 6.26 shift operator 6.19
object file, relocatable 3.2 shift operator, left 6.19
octal constants 6.2 shift operator, right 6.19
offset 5.13 short integer type 6.7
opcodes 5.6 sizeof 6.13
operator precedence 6.16 sizeof operator 6.18
operator, addition 6.19 statement, break 6.25
operator, address 6.18 statement, case label 6-.25
operator, array 6.17 statement, compound 6,24
operator, assignment 6.23 statement, continue 6.25
operator, bitwise and 6.21 statement, default 6.25
operator, bitwise exclusive or 6.21 statement. do 6.24
operator, bitwise Not 6.17 statement, expression 6.23
operator, bitwise or 6.21 statement, for 6.24
operator, cast 6.18 statement, goto 6.26
operator, comma 6.23 statement, label 6.26
operator, conditional 6.23 statement, null 6.26
operator, decrement 6.18 statement, return 6.25
operator, division 6.19 statement, switch 6.25
operator, equal-to 6.20 statement, while 6.24
operator, function 6.16 statements 6.23
operator, greater-than 6.20 static variables 6.7
operator, greater-than-equal 6.20 storage class 6.6
operator, increment 6.17 storage class, typedef 6.7
operator, indirection 6.18 strings 6.3
operator, left shift 6.19 structure member name spaces 6.9
operator, less-than 6.20 structure member operator 6.17
operator, less-than-equal 6.20 structure member pointer operator 6.17
operator, logical and 6.21 structure, type 6.9
opertor, logical not 6.17 subtraction operator 6.19
opertor, logical or 6.21 switch statement 6.75
opertor, modulo 6.19 syn 5.14
opertor, multiplication 6.19 tab 6.2
operator, not-equal 6.20 Theory Of Operation 3.1
operator, right shift 6.19 trinary operators 6.15
operator, shift 6.19 type 6.7
operator, sizeof 6.18 type structure 6.9
operator, structure member 6.17 type, array 6.8
operator, structure member pointer 6.17 type, character 6.7
operator, subtraction 6.19 type, floating point 6.8
operator, unary minus 6.18 type, function 6.8
operator, update assignment 6.23 type, integer 6.7
operators 6.16 type, long integer 6.7
operators, additive 6.19 type, pointer 6.9
operators, addressing 6.16 type, short integer 6.7
operators, assignment 6.23 type, union 6.9
operators, binary 6.15 type, unsigned integer 6.7
operators, equality 6.20 typedef.storage class 6.7
operators, multiplicative 6.19 unary minus operator 6.18
operators, relational 6.20 unary operators 6.15, 6.17
operators, trinary 6.15 tundef 6.6
operators, unary 6.1 5. 6.17 underscore 6.1
options, compiler 4.2 union type 6.9
or operator, bitwise 6.21 unsigned integer type 6.7
or operator, logical 6.21 update assignment operator 6.23
pointer type 6.9 variables, auto 6.6
pointers 6.9 variables, extern 6.6
preprocessor directives 6.3 variables, register 6.6
preprocessor macro 6.4 variables, static 6.7
preceoence. operator 6.16 while statement 6.24
register variables 6.5 white space 6.l

I.2

